Revision e45edf477b8874a1a9fa0db5c018e97af0632201 authored by Yohan Chalabi on 14 September 2012, 00:00:00 UTC, committed by Gabor Csardi on 14 September 2012, 00:00:00 UTC
1 parent 60e3e5c
Raw File
dist-ghtMode.Rd
\name{ghtMode}


\alias{ghtMode}


\title{Generalized Hyperbolic Student-t Mode}


\description{
    
    Computes the mode of the generalized hyperbolic 
    Student-t distribution.
    
}


\usage{
ghtMode(beta = 0.1, delta = 1, mu = 0, nu = 10)
}


\arguments{

    \item{beta, delta, mu}{
        numeric values.
        \code{beta} is the skewness parameter in the range \code{(0, alpha)};
        \code{delta} is the scale parameter, must be zero or positive; 
        \code{mu} is the location parameter, by default 0.
        These are the parameters in the first parameterization.
        }
    \item{nu}{
        a numeric value, the number of degrees of freedom.
        Note, \code{alpha} takes the limit of \code{abs(beta)}, 
        and \code{lambda=-nu/2}.
        }
    
}


\value{
    
    returns the mode for the generalized hyperbolic Student-t
    distribution. A numeric value.
    
}



\references{
Atkinson, A.C. (1982); 
    \emph{The simulation of generalized inverse Gaussian and hyperbolic 
    random variables},
    SIAM J. Sci. Stat. Comput. 3, 502--515. 

Barndorff-Nielsen O. (1977);
    \emph{Exponentially decreasing distributions for the logarithm of 
    particle size}, 
    Proc. Roy. Soc. Lond., A353, 401--419. 

Barndorff-Nielsen O., Blaesild, P. (1983); 
    \emph{Hyperbolic distributions. In Encyclopedia of Statistical 
    Sciences}, 
    Eds., Johnson N.L., Kotz S. and Read C.B., 
    Vol. 3, pp. 700--707. New York: Wiley. 

Raible S. (2000);
    \emph{Levy Processes in Finance: Theory, Numerics and Empirical Facts},
    PhD Thesis, University of Freiburg, Germany, 161 pages.
}


\examples{   
## ghtMode -
   ghtMode()
}


\keyword{distribution}

back to top