Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision e54a8ffb2a30952542234280d443c6dd6e2649d5 authored by TUNA Caglayan on 26 April 2021, 13:54:29 UTC, committed by TUNA Caglayan on 12 May 2021, 12:26:22 UTC
decimal and tensor to vec
1 parent 5412537
  • Files
  • Changes
  • 1633999
  • /
  • tensorly
  • /
  • metrics
  • /
  • regression.py
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:e54a8ffb2a30952542234280d443c6dd6e2649d5
directory badge Iframe embedding
swh:1:dir:8fc0e6caca3778777adcb5e6023401825ea79db9
content badge Iframe embedding
swh:1:cnt:a9bcef0fe9a3ed6e16adf00daf02747812650cd2
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
regression.py
from .. import backend as T

# Author: Jean Kossaifi <jean.kossaifi+tensors@gmail.com>


def MSE(y_true, y_pred, axis=None):
    """Returns the mean squared error between the two predictions

    Parameters
    ----------
    y_true : array of shape (n_samples, )
        Ground truth (correct) target values.
    y_pred : array of shape (n_samples, )
        Estimated target values.

    Returns
    -------
    float
    """
    return T.mean((y_true - y_pred) ** 2, axis=axis)


def RMSE(y_true, y_pred, axis=None):
    """Returns the regularised mean squared error between the two predictions
    (the square-root is applied to the mean_squared_error)

    Parameters
    ----------
    y_true : array of shape (n_samples, )
        Ground truth (correct) target values.
    y_pred : array of shape (n_samples, )
        Estimated target values.

    Returns
    -------
    float
    """
    return T.sqrt(MSE(y_true, y_pred, axis=axis))


def reflective_correlation_coefficient(y_true, y_pred, axis=None):
    """Reflective variant of Pearson's product moment correlation coefficient
    where the predictions are not centered around their mean values.

    Parameters
    ----------
    y_true : array of shape (n_samples, )
        Ground truth (correct) target values.
    y_pred : array of shape (n_samples, )
        Estimated target values.

    Returns
    -------
    float: reflective correlation coefficient
    """
    return T.sum(y_true*y_pred, axis=axis)/T.sqrt(T.sum(y_true**2, axis=axis)*T.sum(y_pred**2, axis=axis))


def covariance(y_true, y_pred, axis=None):
    centered_true = T.mean(y_true, axis=axis)
    centered_pred = T.mean(y_pred, axis=axis)

    if axis is not None:
        # TODO: write a function to do this..
        shape = list(T.shape(y_true))
        shape[axis] = 1
        centered_true = T.reshape(centered_true, shape)
        shape = list(T.shape(y_pred))
        shape[axis] = 1
        centered_pred = T.reshape(centered_pred, shape)

    return T.mean((y_true - centered_true)*(y_pred - centered_pred), axis=axis)


def variance(y, axis=None):
    return covariance(y, y, axis=axis)


def standard_deviation(y, axis=None):
    return T.sqrt(variance(y, axis=axis))


def correlation(y_true, y_pred, axis=None):
    """Pearson's product moment correlation coefficient"""
    return covariance(y_true, y_pred, axis=axis)/T.sqrt(variance(y_true, axis)*variance(y_pred, axis))

The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API