Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision e54a8ffb2a30952542234280d443c6dd6e2649d5 authored by TUNA Caglayan on 26 April 2021, 13:54:29 UTC, committed by TUNA Caglayan on 12 May 2021, 12:26:22 UTC
decimal and tensor to vec
1 parent 5412537
  • Files
  • Changes
  • 1633999
  • /
  • tensorly
  • /
  • tests
  • /
  • test_tucker_tensor.py
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:e54a8ffb2a30952542234280d443c6dd6e2649d5
directory badge Iframe embedding
swh:1:dir:41f4e356470b5223521a77869d889738e59b4546
content badge Iframe embedding
swh:1:cnt:600c1bcb38db6ca2cb814945533d50ef4e7f4b84
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
test_tucker_tensor.py
import numpy as np

from .. import backend as tl
from ..base import unfold, tensor_to_vec
from ..tucker_tensor import (tucker_to_tensor, tucker_to_unfolded,
                             tucker_to_vec, _validate_tucker_tensor,
                             tucker_mode_dot,
                             _tucker_n_param, validate_tucker_rank)
from ..tenalg import kronecker, mode_dot
from ..testing import (assert_array_equal, assert_array_almost_equal, 
                       assert_equal, assert_raises, assert_)
from ..random import random_tucker


def test_validate_tucker_tensor():
    rng = tl.check_random_state(12345)
    true_shape = (3, 4, 5)
    true_rank = (3, 2, 4)
    core, factors = random_tucker(true_shape, rank=true_rank)
    
    # Check shape and rank returned
    shape, rank = _validate_tucker_tensor((core, factors))
    assert_equal(shape, true_shape,
                    err_msg='Returned incorrect shape (got {}, expected {})'.format(
                        shape, true_shape))
    assert_equal(rank, true_rank,
                    err_msg='Returned incorrect rank (got {}, expected {})'.format(
                        rank, true_rank))

    # One of the factors has the wrong rank
    factors[0], copy = tl.tensor(rng.random_sample((4, 4))), factors[0]
    with assert_raises(ValueError):
        _validate_tucker_tensor((core, factors))
    
    # Not enough factors to match core
    factors[0] = copy
    with assert_raises(ValueError):
        _validate_tucker_tensor((core, factors[1:]))

    # Not enough factors
    with assert_raises(ValueError):
        _validate_tucker_tensor((core, factors[:1]))


def test_tucker_to_tensor():
    """Test for tucker_to_tensor"""
    X = tl.tensor(np.array([[[1., 13],
                   [4, 16],
                   [7, 19],
                   [10, 22]],

                  [[2, 14],
                   [5, 17],
                   [8, 20],
                   [11, 23]],

                  [[3, 15],
                   [6, 18],
                   [9, 21],
                   [12, 24]]]))
    ranks = [2, 3, 4]
    U = [tl.tensor(np.arange(R * s, dtype=float).reshape((R, s))) for (R, s) in zip(ranks, tl.shape(X))]
    true_res = np.array([[[390., 1518, 2646, 3774],
                         [1310, 4966, 8622, 12278],
                         [2230, 8414, 14598, 20782]],
                        [[1524, 5892, 10260, 14628],
                         [5108, 19204, 33300, 47396],
                         [8692, 32516, 56340, 80164]]])
    res = tucker_to_tensor((X, U))
    assert_array_equal(true_res, res)


def test_tucker_to_unfolded():
    """Test for tucker_to_unfolded

    Notes
    -----
    Assumes that tucker_to_tensor is properly tested
    """
    G = tl.tensor(np.random.random((4, 3, 5, 2)))
    ranks = [2, 2, 3, 4]
    U = [tl.tensor(np.random.random((ranks[i], G.shape[i]))) for i in range(tl.ndim(G))]
    full_tensor = tucker_to_tensor((G, U))
    for mode in range(tl.ndim(G)):
        assert_array_almost_equal(tucker_to_unfolded((G, U), mode), unfold(full_tensor, mode))
        assert_array_almost_equal(tucker_to_unfolded((G, U), mode),
                                    tl.dot(tl.dot(U[mode], unfold(G, mode)), tl.transpose(kronecker(U, skip_matrix=mode))),
                                    decimal=5)


def test_tucker_to_vec():
    """Test for tucker_to_vec

    Notes
    -----
    Assumes that tucker_to_tensor works correctly
    """
    G = tl.tensor(np.random.random((4, 3, 5, 2)))
    ranks = [2, 2, 3, 4]
    U = [tl.tensor(np.random.random((ranks[i], G.shape[i]))) for i in range(tl.ndim(G))]
    vec = tensor_to_vec(tucker_to_tensor((G, U)))
    assert_array_almost_equal(tucker_to_vec((G, U)), vec)
    assert_array_almost_equal(tucker_to_vec((G, U)), tl.dot(kronecker(U), tensor_to_vec(G)), decimal=5)


def test_tucker_mode_dot():
    """Test for tucker_mode_dot
    
        We will compare tucker_mode_dot 
        (which operates directly on decomposed tensors)
        with mode_dot (which operates on full tensors)
        and check that the results are the same.
    """
    rng = tl.check_random_state(12345)
    shape = (5, 4, 6)
    rank = (3, 2, 4)
    tucker_ten = random_tucker(shape, rank=rank, full=False, random_state=rng)
    full_tensor = tucker_to_tensor(tucker_ten)
    # matrix for mode 1
    matrix = tl.tensor(rng.random_sample((7, shape[1])))
    # vec for mode 2
    vec = tl.tensor(rng.random_sample(shape[2]))

    # Test tucker_mode_dot with matrix
    res = tucker_mode_dot(tucker_ten, matrix, mode=1, copy=True)
    # Note that if copy=True is not respected, factors will be changes
    # And the next test will fail
    res = tucker_to_tensor(res)
    true_res = mode_dot(full_tensor, matrix, mode=1)
    assert_array_almost_equal(true_res, res, decimal=5)
    
    # Check that the data was indeed copied
    rec = tucker_to_tensor(tucker_ten)
    assert_array_almost_equal(full_tensor, rec, decimal=5)
    
    # Test tucker_mode_dot with vec
    res = tucker_mode_dot(tucker_ten, vec, mode=2, copy=True)
    res = tucker_to_tensor(res)
    true_res = mode_dot(full_tensor, vec, mode=2)
    assert_equal(res.shape, true_res.shape)
    assert_array_almost_equal(true_res, res, decimal=5)


def test_n_param_tucker():
    """Test for _tucker_n_param"""
    tensor_shape = (2, 3, 4, 1, 5)
    rank = (3, 2, 2, 1, 4)
    core, factors = random_tucker(shape=tensor_shape, rank=rank)
    true_n_param = np.prod(tl.shape(core)) + np.sum([np.prod(tl.shape(f)) for f in factors])
    n_param = _tucker_n_param(tensor_shape, rank)
    assert_equal(n_param, true_n_param)

def test_validate_tucker_rank():
    """Test validate_tucker_rank with random sizes"""
    tol = 0.01

    tensor_shape = tuple(np.random.randint(1, 100, size=5))
    n_param_tensor = np.prod(tensor_shape)

    # Rounding = floor
    rank = validate_tucker_rank(tensor_shape, rank='same', rounding='floor')
    n_param = _tucker_n_param(tensor_shape, rank)
    assert_(n_param*(1 - tol) <= n_param_tensor)

    # Rounding = ceil
    rank = validate_tucker_rank(tensor_shape, rank='same', rounding='ceil')
    n_param = _tucker_n_param(tensor_shape, rank)
    assert_(n_param >= n_param_tensor*(1 - tol))

    # With fixed modes
    fixed_modes = [1, 4]
    tensor_shape = [s**2 if i in fixed_modes else s for (i, s) in enumerate(np.random.randint(2, 10, size=5))]
    n_param_tensor = np.prod(tensor_shape)
    # Floor
    rank = validate_tucker_rank(tensor_shape, rank=0.5, fixed_modes=fixed_modes, rounding='floor')
    n_param = _tucker_n_param(tensor_shape, rank)
    for mode in fixed_modes:
        assert_(rank[mode] == tensor_shape[mode])
    assert_(n_param*(1 - tol) <= n_param_tensor*0.5)
    # Ceil
    fixed_modes = [0, 2]
    tensor_shape = [s**2 if i in fixed_modes else s for (i, s) in enumerate(np.random.randint(2, 10, size=5))]
    n_param_tensor = np.prod(tensor_shape)
    rank = validate_tucker_rank(tensor_shape, rank=0.5, fixed_modes=fixed_modes, rounding='ceil')
    n_param = _tucker_n_param(tensor_shape, rank)
    for mode in fixed_modes:
        assert_(rank[mode] == tensor_shape[mode])
    assert_(n_param >= n_param_tensor*0.5*(1 - tol))

The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API