Revision e91d1a21a6ad7dc4eb4ce46c5b3f6ad550357640 authored by Peter Dillinger on 27 March 2020, 02:34:06 UTC, committed by Facebook GitHub Bot on 27 March 2020, 02:36:32 UTC
Summary:
This test was written like a stress test, using up to 3x26GB
RSS memory during parallel 'make check'. Now, while this code is mostly
dormant, I've made the "for Travis" versions of the expensive tests the
canonical versions and disabled the expensive versions. This has the
side benefit of removing some arbitrary conditional compilation.

For unknown reason, the super expensive tests were gated on
Snappy_Supported, which appears to be irrelevant, so I removed it.

The tests can be fixed / improved / migrated to stress test if/when they
are deemed important again.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6601

Test Plan:
make check + CI

./persistent_cache_test Before:
...
[==========] 10 tests from 2 test cases ran. (114541 ms total)
[  PASSED  ] 10 tests.
YOU HAVE 1 DISABLED TEST

After:
...
[==========] 3 tests from 2 test cases ran. (1714 ms total)
[  PASSED  ] 3 tests.
YOU HAVE 10 DISABLED TESTS

Reviewed By: siying

Differential Revision: D20680983

Pulled By: pdillinger

fbshipit-source-id: 2be0fde13eeb0a71110ac7f5477cfe63996a509e
1 parent 6f62322
Raw File
compaction.h
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#pragma once
#include "db/version_set.h"
#include "memory/arena.h"
#include "options/cf_options.h"
#include "util/autovector.h"

namespace ROCKSDB_NAMESPACE {
// The file contains class Compaction, as well as some helper functions
// and data structures used by the class.

// Utility for comparing sstable boundary keys. Returns -1 if either a or b is
// null which provides the property that a==null indicates a key that is less
// than any key and b==null indicates a key that is greater than any key. Note
// that the comparison is performed primarily on the user-key portion of the
// key. If the user-keys compare equal, an additional test is made to sort
// range tombstone sentinel keys before other keys with the same user-key. The
// result is that 2 user-keys will compare equal if they differ purely on
// their sequence number and value, but the range tombstone sentinel for that
// user-key will compare not equal. This is necessary because the range
// tombstone sentinel key is set as the largest key for an sstable even though
// that key never appears in the database. We don't want adjacent sstables to
// be considered overlapping if they are separated by the range tombstone
// sentinel.
int sstableKeyCompare(const Comparator* user_cmp, const InternalKey& a,
                      const InternalKey& b);
int sstableKeyCompare(const Comparator* user_cmp, const InternalKey* a,
                      const InternalKey& b);
int sstableKeyCompare(const Comparator* user_cmp, const InternalKey& a,
                      const InternalKey* b);

// An AtomicCompactionUnitBoundary represents a range of keys [smallest,
// largest] that exactly spans one ore more neighbouring SSTs on the same
// level. Every pair of  SSTs in this range "overlap" (i.e., the largest
// user key of one file is the smallest user key of the next file). These
// boundaries are propagated down to RangeDelAggregator during compaction
// to provide safe truncation boundaries for range tombstones.
struct AtomicCompactionUnitBoundary {
  const InternalKey* smallest = nullptr;
  const InternalKey* largest = nullptr;
};

// The structure that manages compaction input files associated
// with the same physical level.
struct CompactionInputFiles {
  int level;
  std::vector<FileMetaData*> files;
  std::vector<AtomicCompactionUnitBoundary> atomic_compaction_unit_boundaries;
  inline bool empty() const { return files.empty(); }
  inline size_t size() const { return files.size(); }
  inline void clear() { files.clear(); }
  inline FileMetaData* operator[](size_t i) const { return files[i]; }
};

class Version;
class ColumnFamilyData;
class VersionStorageInfo;
class CompactionFilter;

// A Compaction encapsulates metadata about a compaction.
class Compaction {
 public:
  Compaction(VersionStorageInfo* input_version,
             const ImmutableCFOptions& immutable_cf_options,
             const MutableCFOptions& mutable_cf_options,
             std::vector<CompactionInputFiles> inputs, int output_level,
             uint64_t target_file_size, uint64_t max_compaction_bytes,
             uint32_t output_path_id, CompressionType compression,
             CompressionOptions compression_opts, uint32_t max_subcompactions,
             std::vector<FileMetaData*> grandparents,
             bool manual_compaction = false, double score = -1,
             bool deletion_compaction = false,
             CompactionReason compaction_reason = CompactionReason::kUnknown);

  // No copying allowed
  Compaction(const Compaction&) = delete;
  void operator=(const Compaction&) = delete;

  ~Compaction();

  // Returns the level associated to the specified compaction input level.
  // If compaction_input_level is not specified, then input_level is set to 0.
  int level(size_t compaction_input_level = 0) const {
    return inputs_[compaction_input_level].level;
  }

  int start_level() const { return start_level_; }

  // Outputs will go to this level
  int output_level() const { return output_level_; }

  // Returns the number of input levels in this compaction.
  size_t num_input_levels() const { return inputs_.size(); }

  // Return the object that holds the edits to the descriptor done
  // by this compaction.
  VersionEdit* edit() { return &edit_; }

  // Returns the number of input files associated to the specified
  // compaction input level.
  // The function will return 0 if when "compaction_input_level" < 0
  // or "compaction_input_level" >= "num_input_levels()".
  size_t num_input_files(size_t compaction_input_level) const {
    if (compaction_input_level < inputs_.size()) {
      return inputs_[compaction_input_level].size();
    }
    return 0;
  }

  // Returns input version of the compaction
  Version* input_version() const { return input_version_; }

  // Returns the ColumnFamilyData associated with the compaction.
  ColumnFamilyData* column_family_data() const { return cfd_; }

  // Returns the file meta data of the 'i'th input file at the
  // specified compaction input level.
  // REQUIREMENT: "compaction_input_level" must be >= 0 and
  //              < "input_levels()"
  FileMetaData* input(size_t compaction_input_level, size_t i) const {
    assert(compaction_input_level < inputs_.size());
    return inputs_[compaction_input_level][i];
  }

  const std::vector<AtomicCompactionUnitBoundary>* boundaries(
      size_t compaction_input_level) const {
    assert(compaction_input_level < inputs_.size());
    return &inputs_[compaction_input_level].atomic_compaction_unit_boundaries;
  }

  // Returns the list of file meta data of the specified compaction
  // input level.
  // REQUIREMENT: "compaction_input_level" must be >= 0 and
  //              < "input_levels()"
  const std::vector<FileMetaData*>* inputs(
      size_t compaction_input_level) const {
    assert(compaction_input_level < inputs_.size());
    return &inputs_[compaction_input_level].files;
  }

  const std::vector<CompactionInputFiles>* inputs() { return &inputs_; }

  // Returns the LevelFilesBrief of the specified compaction input level.
  const LevelFilesBrief* input_levels(size_t compaction_input_level) const {
    return &input_levels_[compaction_input_level];
  }

  // Maximum size of files to build during this compaction.
  uint64_t max_output_file_size() const { return max_output_file_size_; }

  // What compression for output
  CompressionType output_compression() const { return output_compression_; }

  // What compression options for output
  CompressionOptions output_compression_opts() const {
    return output_compression_opts_;
  }

  // Whether need to write output file to second DB path.
  uint32_t output_path_id() const { return output_path_id_; }

  // Is this a trivial compaction that can be implemented by just
  // moving a single input file to the next level (no merging or splitting)
  bool IsTrivialMove() const;

  // If true, then the compaction can be done by simply deleting input files.
  bool deletion_compaction() const { return deletion_compaction_; }

  // Add all inputs to this compaction as delete operations to *edit.
  void AddInputDeletions(VersionEdit* edit);

  // Returns true if the available information we have guarantees that
  // the input "user_key" does not exist in any level beyond "output_level()".
  bool KeyNotExistsBeyondOutputLevel(const Slice& user_key,
                                     std::vector<size_t>* level_ptrs) const;

  // Clear all files to indicate that they are not being compacted
  // Delete this compaction from the list of running compactions.
  //
  // Requirement: DB mutex held
  void ReleaseCompactionFiles(Status status);

  // Returns the summary of the compaction in "output" with maximum "len"
  // in bytes.  The caller is responsible for the memory management of
  // "output".
  void Summary(char* output, int len);

  // Return the score that was used to pick this compaction run.
  double score() const { return score_; }

  // Is this compaction creating a file in the bottom most level?
  bool bottommost_level() const { return bottommost_level_; }

  // Does this compaction include all sst files?
  bool is_full_compaction() const { return is_full_compaction_; }

  // Was this compaction triggered manually by the client?
  bool is_manual_compaction() const { return is_manual_compaction_; }

  // Used when allow_trivial_move option is set in
  // Universal compaction. If all the input files are
  // non overlapping, then is_trivial_move_ variable
  // will be set true, else false
  void set_is_trivial_move(bool trivial_move) {
    is_trivial_move_ = trivial_move;
  }

  // Used when allow_trivial_move option is set in
  // Universal compaction. Returns true, if the input files
  // are non-overlapping and can be trivially moved.
  bool is_trivial_move() const { return is_trivial_move_; }

  // How many total levels are there?
  int number_levels() const { return number_levels_; }

  // Return the ImmutableCFOptions that should be used throughout the compaction
  // procedure
  const ImmutableCFOptions* immutable_cf_options() const {
    return &immutable_cf_options_;
  }

  // Return the MutableCFOptions that should be used throughout the compaction
  // procedure
  const MutableCFOptions* mutable_cf_options() const {
    return &mutable_cf_options_;
  }

  // Returns the size in bytes that the output file should be preallocated to.
  // In level compaction, that is max_file_size_. In universal compaction, that
  // is the sum of all input file sizes.
  uint64_t OutputFilePreallocationSize() const;

  void SetInputVersion(Version* input_version);

  struct InputLevelSummaryBuffer {
    char buffer[128];
  };

  const char* InputLevelSummary(InputLevelSummaryBuffer* scratch) const;

  uint64_t CalculateTotalInputSize() const;

  // In case of compaction error, reset the nextIndex that is used
  // to pick up the next file to be compacted from files_by_size_
  void ResetNextCompactionIndex();

  // Create a CompactionFilter from compaction_filter_factory
  std::unique_ptr<CompactionFilter> CreateCompactionFilter() const;

  // Is the input level corresponding to output_level_ empty?
  bool IsOutputLevelEmpty() const;

  // Should this compaction be broken up into smaller ones run in parallel?
  bool ShouldFormSubcompactions() const;

  // test function to validate the functionality of IsBottommostLevel()
  // function -- determines if compaction with inputs and storage is bottommost
  static bool TEST_IsBottommostLevel(
      int output_level, VersionStorageInfo* vstorage,
      const std::vector<CompactionInputFiles>& inputs);

  TablePropertiesCollection GetOutputTableProperties() const {
    return output_table_properties_;
  }

  void SetOutputTableProperties(TablePropertiesCollection tp) {
    output_table_properties_ = std::move(tp);
  }

  Slice GetSmallestUserKey() const { return smallest_user_key_; }

  Slice GetLargestUserKey() const { return largest_user_key_; }

  int GetInputBaseLevel() const;

  CompactionReason compaction_reason() { return compaction_reason_; }

  const std::vector<FileMetaData*>& grandparents() const {
    return grandparents_;
  }

  uint64_t max_compaction_bytes() const { return max_compaction_bytes_; }

  uint32_t max_subcompactions() const { return max_subcompactions_; }

  uint64_t MinInputFileOldestAncesterTime() const;

 private:
  // mark (or clear) all files that are being compacted
  void MarkFilesBeingCompacted(bool mark_as_compacted);

  // get the smallest and largest key present in files to be compacted
  static void GetBoundaryKeys(VersionStorageInfo* vstorage,
                              const std::vector<CompactionInputFiles>& inputs,
                              Slice* smallest_key, Slice* largest_key);

  // Get the atomic file boundaries for all files in the compaction. Necessary
  // in order to avoid the scenario described in
  // https://github.com/facebook/rocksdb/pull/4432#discussion_r221072219 and plumb
  // down appropriate key boundaries to RangeDelAggregator during compaction.
  static std::vector<CompactionInputFiles> PopulateWithAtomicBoundaries(
      VersionStorageInfo* vstorage, std::vector<CompactionInputFiles> inputs);

  // helper function to determine if compaction with inputs and storage is
  // bottommost
  static bool IsBottommostLevel(
      int output_level, VersionStorageInfo* vstorage,
      const std::vector<CompactionInputFiles>& inputs);

  static bool IsFullCompaction(VersionStorageInfo* vstorage,
                               const std::vector<CompactionInputFiles>& inputs);

  VersionStorageInfo* input_vstorage_;

  const int start_level_;    // the lowest level to be compacted
  const int output_level_;  // levels to which output files are stored
  uint64_t max_output_file_size_;
  uint64_t max_compaction_bytes_;
  uint32_t max_subcompactions_;
  const ImmutableCFOptions immutable_cf_options_;
  const MutableCFOptions mutable_cf_options_;
  Version* input_version_;
  VersionEdit edit_;
  const int number_levels_;
  ColumnFamilyData* cfd_;
  Arena arena_;          // Arena used to allocate space for file_levels_

  const uint32_t output_path_id_;
  CompressionType output_compression_;
  CompressionOptions output_compression_opts_;
  // If true, then the comaction can be done by simply deleting input files.
  const bool deletion_compaction_;

  // Compaction input files organized by level. Constant after construction
  const std::vector<CompactionInputFiles> inputs_;

  // A copy of inputs_, organized more closely in memory
  autovector<LevelFilesBrief, 2> input_levels_;

  // State used to check for number of overlapping grandparent files
  // (grandparent == "output_level_ + 1")
  std::vector<FileMetaData*> grandparents_;
  const double score_;         // score that was used to pick this compaction.

  // Is this compaction creating a file in the bottom most level?
  const bool bottommost_level_;
  // Does this compaction include all sst files?
  const bool is_full_compaction_;

  // Is this compaction requested by the client?
  const bool is_manual_compaction_;

  // True if we can do trivial move in Universal multi level
  // compaction
  bool is_trivial_move_;

  // Does input compression match the output compression?
  bool InputCompressionMatchesOutput() const;

  // table properties of output files
  TablePropertiesCollection output_table_properties_;

  // smallest user keys in compaction
  Slice smallest_user_key_;

  // largest user keys in compaction
  Slice largest_user_key_;

  // Reason for compaction
  CompactionReason compaction_reason_;
};

// Return sum of sizes of all files in `files`.
extern uint64_t TotalFileSize(const std::vector<FileMetaData*>& files);

}  // namespace ROCKSDB_NAMESPACE
back to top