Revision e9275c2749d590998082da0544957d33c28d59e5 authored by Mark van der Wilk on 03 May 2017, 17:08:06 UTC, committed by GitHub on 03 May 2017, 17:08:06 UTC
* Add regression test for NaNs in gradient * Fix NaN in gradient if cos_theta is close to one * Use jitter close to machine epsilon
1 parent 5190ada
test_hmc.py
import GPflow
import numpy as np
import unittest
import tensorflow as tf
class SampleGaussianTest(unittest.TestCase):
def setUp(self):
tf.reset_default_graph()
self.f = lambda x: (0.5*np.sum(np.square(x)), x)
self.x0 = np.zeros(3)
def test_mean_cov(self):
samples = GPflow.hmc.sample_HMC(self.f, num_samples=1000, Lmin=10, Lmax=20, epsilon=0.05,
x0=self.x0, verbose=False, thin=10, burn=0)
mean = samples.mean(0)
cov = np.cov(samples.T)
self.assertTrue(np.allclose(mean, np.zeros(3), 1e-1, 1e-1))
self.assertTrue(np.allclose(cov, np.eye(3), 1e-1, 1e-1))
def test_rng(self):
"""
Make sure all randomness can be atributed to the rng
"""
samples1 = GPflow.hmc.sample_HMC(self.f, num_samples=1000, Lmin=10, Lmax=20, epsilon=0.05,
x0=self.x0, verbose=False, thin=10, burn=0,
RNG=np.random.RandomState(10))
samples2 = GPflow.hmc.sample_HMC(self.f, num_samples=1000, Lmin=10, Lmax=20, epsilon=0.05,
x0=self.x0, verbose=False, thin=10, burn=0,
RNG=np.random.RandomState(10))
samples3 = GPflow.hmc.sample_HMC(self.f, num_samples=1000, Lmin=10, Lmax=20, epsilon=0.05,
x0=self.x0, verbose=False, thin=10, burn=0,
RNG=np.random.RandomState(11))
self.assertTrue(np.all(samples1 == samples2))
self.assertFalse(np.all(samples1 == samples3))
def test_burn(self):
samples = GPflow.hmc.sample_HMC(self.f, num_samples=100, Lmin=10, Lmax=20, epsilon=0.05,
x0=self.x0, verbose=False, thin=1, burn=10,
RNG=np.random.RandomState(11))
self.assertTrue(samples.shape == (100, 3))
self.assertFalse(np.all(samples[0] == self.x0))
def test_return_logprobs(self):
s, logps = GPflow.hmc.sample_HMC(self.f, num_samples=100, Lmin=10, Lmax=20, epsilon=0.05,
x0=self.x0, verbose=False, thin=1, burn=10,
RNG=np.random.RandomState(11), return_logprobs=True)
class SampleModelTest(unittest.TestCase):
"""
Create a very simple model and make sure samples form is make sense.
"""
def setUp(self):
tf.reset_default_graph()
rng = np.random.RandomState(0)
class Quadratic(GPflow.model.Model):
def __init__(self):
GPflow.model.Model.__init__(self)
self.x = GPflow.param.Param(rng.randn(2))
def build_likelihood(self):
return -tf.reduce_sum(tf.square(self.x))
self.m = Quadratic()
def test_mean(self):
samples = self.m.sample(num_samples=400, Lmin=10, Lmax=20, epsilon=0.05)
self.assertTrue(samples.shape == (400, 2))
self.assertTrue(np.allclose(samples.mean(0), np.zeros(2), 1e-1, 1e-1))
def test_return_logprobs(self):
s, logps = self.m.sample(num_samples=200, Lmax=20, epsilon=0.05, return_logprobs=True)
class SamplesDictTest(unittest.TestCase):
def setUp(self):
X, Y = np.random.randn(2, 10, 1)
self.m = GPflow.gpmc.GPMC(X, Y, kern=GPflow.kernels.Matern32(1), likelihood=GPflow.likelihoods.StudentT())
def test_samples_df(self):
samples = self.m.sample(num_samples=20, Lmax=10, epsilon=0.05)
sample_df = self.m.get_samples_df(samples)
for name, trace in sample_df.iteritems():
self.assertTrue(trace.shape[0] == 20)
self.assertTrue(trace.iloc[0].shape == self.m.get_parameter_dict()[name].shape)
self.assertTrue(trace.iloc[10].shape == self.m.get_parameter_dict()[name].shape)
def test_with_fixed(self):
self.m.kern.lengthscales.fixed = True
samples = self.m.sample(num_samples=20, Lmax=10, epsilon=0.05)
sample_dict = self.m.get_samples_df(samples)
ls_trace = sample_dict['model.kern.lengthscales']
assert np.all([np.all(v == ls_trace[0]) for v in ls_trace])
if __name__ == "__main__":
unittest.main()
Computing file changes ...