Revision e9275c2749d590998082da0544957d33c28d59e5 authored by Mark van der Wilk on 03 May 2017, 17:08:06 UTC, committed by GitHub on 03 May 2017, 17:08:06 UTC
* Add regression test for NaNs in gradient * Fix NaN in gradient if cos_theta is close to one * Use jitter close to machine epsilon
1 parent 5190ada
test_param.py
# Copyright 2016 the GPflow authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.from __future__ import print_function
from functools import reduce
import unittest
import GPflow
import tensorflow as tf
import numpy as np
from GPflow import settings
float_type = settings.dtypes.float_type
np_float_type = np.float32 if float_type is tf.float32 else np.float64
try:
import cPickle as pickle
except ImportError:
import pickle
class NamingTests(unittest.TestCase):
def test_unnamed(self):
p = GPflow.param.Param(1)
self.assertTrue(p.name == 'unnamed')
def test_bad_parent(self):
p = GPflow.param.Param(1)
m = GPflow.model.Model()
p._parent = m # do not do this.
with self.assertRaises(ValueError):
print(p.name)
class ParamTestsScalar(unittest.TestCase):
def setUp(self):
tf.reset_default_graph()
self.m = GPflow.param.Parameterized()
self.m.p = GPflow.param.Param(1.0)
def testAssign(self):
self.m.p = 2.0
self.assertTrue(isinstance(self.m.p, GPflow.param.Param))
self.assertTrue(self.m.get_free_state() == 2.0)
def testValue(self):
# make sure the correct value is returned
self.m.p = 3.0
self.assertTrue(isinstance(self.m.p.value, np.ndarray))
# make sure assignment does not work
with self.assertRaises(AttributeError):
self.m.p.value = 2.53
# make sure we get a copy
self.assertFalse(self.m.p.value is self.m.p._array)
def testReplacement(self):
old_p = self.m.p
new_p = GPflow.param.Param(3.0)
self.m.p = new_p
# Parameterized instances should not have _needs_recompile
self.assertFalse(hasattr(self.m, '_needs_recompile'))
self.assertFalse(old_p.highest_parent is self.m)
def testHighestParent(self):
self.assertTrue(self.m.p.highest_parent is self.m)
def testName(self):
self.assertTrue(self.m.p.name == 'p')
def testFixing(self):
self.m.p.fixed = False
self.m.fixed = True
self.assertTrue(self.m.p.fixed)
self.m.p.fixed = False
self.assertFalse(self.m.fixed)
def testFixedFreeState(self):
self.assertTrue(len(self.m.get_free_state()) == 1)
self.m.set_state(np.ones(1))
self.m.fixed = True
self.assertTrue(len(self.m.get_free_state()) == 0)
self.m.set_state(np.ones(0))
def testMakeTF(self):
x = tf.placeholder('float64')
l = self.m.make_tf_array(x)
self.assertTrue(l == 1)
l = self.m.p.make_tf_array(x)
self.assertTrue(l == 1)
def testFreeState(self):
xx = self.m.get_free_state()
self.assertTrue(np.allclose(xx, np.ones(1)))
y = np.array([34.0], np_float_type)
self.m.set_state(y)
self.assertTrue(np.allclose(self.m.get_free_state(), y))
def testFixed(self):
self.m.p.fixed = True
self.assertTrue(len(self.m.get_free_state()) == 0)
self.assertTrue(self.m.make_tf_array(tf.placeholder(float_type)) == 0)
def testRecompile(self):
self.m._needs_recompile = False
self.m.p.fixed = True
self.assertTrue(self.m._needs_recompile)
self.m._needs_recompile = False
self.m.p.prior = GPflow.priors.Gaussian(0, 1)
self.assertTrue(self.m._needs_recompile)
def testTFMode(self):
x = tf.placeholder('float64')
self.m.make_tf_array(x)
self.assertTrue(isinstance(self.m.p, GPflow.param.Param))
with self.m.tf_mode():
self.assertTrue(isinstance(self.m.p, tf.Tensor))
class ParamTestsDeeper(unittest.TestCase):
def setUp(self):
tf.reset_default_graph()
self.m = GPflow.param.Parameterized()
self.m.foo = GPflow.param.Parameterized()
self.m.foo.bar = GPflow.param.Parameterized()
self.m.foo.bar.baz = GPflow.param.Param(1.0)
def testHighestParent(self):
self.assertTrue(self.m.foo.highest_parent is self.m)
self.assertTrue(self.m.foo.bar.highest_parent is self.m)
self.assertTrue(self.m.foo.bar.baz.highest_parent is self.m)
def testReplacement(self):
old_p = self.m.foo.bar.baz
new_p = GPflow.param.Param(3.0)
self.m.foo.bar.baz = new_p
# Parameterized instances should not have _needs_recompile
self.assertFalse(hasattr(self.m, '_needs_recompile'))
self.assertFalse(old_p.highest_parent is self.m)
def testReplacement2(self):
old_p = self.m.foo.bar
new_p = GPflow.param.Parameterized()
new_p.baz = GPflow.param.Param(3.0)
self.m.foo.bar = new_p
self.assertTrue(new_p.baz.highest_parent is self.m)
self.assertFalse(old_p.highest_parent is self.m)
def testName(self):
self.assertTrue(self.m.foo.name == 'foo')
self.assertTrue(self.m.foo.bar.name == 'bar')
self.assertTrue(self.m.foo.bar.baz.name == 'baz')
def testMakeTF(self):
x = tf.placeholder('float64')
l = self.m.make_tf_array(x)
self.assertTrue(l == 1)
l = self.m.foo.make_tf_array(x)
self.assertTrue(l == 1)
l = self.m.foo.bar.make_tf_array(x)
self.assertTrue(l == 1)
l = self.m.foo.bar.baz.make_tf_array(x)
self.assertTrue(l == 1)
def testFreeState(self):
xx = self.m.get_free_state()
self.assertTrue(np.allclose(xx, np.ones(1)))
y = np.array([34.0], np_float_type)
self.m.set_state(y)
self.assertTrue(np.allclose(self.m.get_free_state(), y))
def testFixed(self):
self.m.foo.bar.baz.fixed = True
self.assertTrue(len(self.m.get_free_state()) == 0)
def testFixing(self):
self.m.fixed = False
self.m.foo.bar.fixed = True
self.assertTrue(self.m.fixed)
self.assertTrue(self.m.foo.fixed)
self.assertTrue(self.m.foo.bar.fixed)
self.assertTrue(self.m.foo.bar.baz.fixed)
self.m.foo.bar.baz.fixed = False
self.assertFalse(self.m.fixed)
self.assertFalse(self.m.foo.fixed)
self.assertFalse(self.m.foo.bar.fixed)
self.assertFalse(self.m.foo.bar.baz.fixed)
def testRecompile(self):
self.m._needs_recompile = False
self.m.foo.bar.baz.fixed = True
self.assertTrue(self.m._needs_recompile)
self.m._needs_recompile = False
self.m.foo.bar.baz.prior = GPflow.priors.Gaussian(0, 1)
self.assertTrue(self.m._needs_recompile)
def testTFMode(self):
x = tf.placeholder('float64')
self.m.make_tf_array(x)
self.assertTrue(isinstance(self.m.foo.bar.baz, GPflow.param.Param))
with self.m.tf_mode():
self.assertTrue(isinstance(self.m.foo.bar.baz, tf.Tensor))
class ParamTestsWider(unittest.TestCase):
def setUp(self):
tf.reset_default_graph()
self.m = GPflow.param.Parameterized()
self.m.foo = GPflow.param.Param(1.0)
self.m.bar = GPflow.param.Param(np.arange(10))
self.m.baz = GPflow.param.Param(np.random.randn(3, 3))
def testHighestParent(self):
self.assertTrue(self.m.foo.highest_parent is self.m)
self.assertTrue(self.m.bar.highest_parent is self.m)
self.assertTrue(self.m.baz.highest_parent is self.m)
def testName(self):
self.assertTrue(self.m.foo.name == 'foo')
self.assertTrue(self.m.bar.name == 'bar')
self.assertTrue(self.m.baz.name == 'baz')
def testMakeTF(self):
x = tf.placeholder('float64')
l = self.m.make_tf_array(x)
self.assertTrue(l == 20)
l = self.m.foo.make_tf_array(x)
self.assertTrue(l == 1)
l = self.m.bar.make_tf_array(x)
self.assertTrue(l == 10)
l = self.m.baz.make_tf_array(x)
self.assertTrue(l == 9)
def testFreeState(self):
xx = self.m.get_free_state()
self.assertTrue(len(xx) == 20)
y = np.random.randn(20)
self.m.set_state(y)
self.assertTrue(np.allclose(self.m.get_free_state(), y))
def testIndexParam(self):
fs = self.m.get_free_state()
for p in [self.m.foo, self.m.bar, self.m.baz]:
index, found = self.m.get_param_index(p)
self.assertTrue(found)
self.assertTrue(fs[index] == p.get_free_state()[0])
def testFixed(self):
self.m.foo.fixed = True
self.assertTrue(len(self.m.get_free_state()) == 19)
self.m.foo.fixed = False
self.m.bar.fixed = True
self.assertTrue(len(self.m.get_free_state()) == 10)
def testFixing(self):
self.m.fixed = False
self.m.foo.fixed = True
self.assertFalse(self.m.fixed)
self.assertTrue(self.m.foo.fixed)
self.assertFalse(self.m.bar.fixed)
self.assertFalse(self.m.baz.fixed)
self.m.bar.fixed = True
self.m.baz.fixed = True
self.assertTrue(self.m.fixed)
self.assertTrue(self.m.foo.fixed)
self.assertTrue(self.m.bar.fixed)
self.assertTrue(self.m.baz.fixed)
def testRecompile(self):
self.m._needs_recompile = False
self.m.foo.fixed = True
self.assertTrue(self.m._needs_recompile)
self.m._needs_recompile = False
self.m.bar.prior = GPflow.priors.Gaussian(0, 1)
self.assertTrue(self.m._needs_recompile)
def testTFMode(self):
x = tf.placeholder('float64')
self.m.make_tf_array(x)
self.assertTrue(all([isinstance(p, GPflow.param.Param) for p in (self.m.foo, self.m.bar, self.m.baz)]))
with self.m.tf_mode():
self.assertTrue(all([isinstance(p, tf.Tensor)
for p in (self.m.foo, self.m.bar, self.m.baz)]))
class SingleParamterizedInvariantTest(unittest.TestCase):
"""
Tests that invariants of only allowing a single reference to a given Parameterized in a tree
"""
def setUp(self):
tf.reset_default_graph()
def testSelfReference(self):
"""
Test we raise when a Parameterized object references itself
"""
m = GPflow.param.Parameterized()
with self.assertRaises(ValueError):
m.foo = m
def testReferenceBelow(self):
"""
Test we raise when we reference the same Parameterized object in a descendent node
"""
m = GPflow.param.Parameterized()
m.foo = GPflow.param.Parameterized()
with self.assertRaises(ValueError):
m.foo.bar = m
def testReferenceAbove(self):
"""
Test we raise when we reference the same Parameterized object in an ancestor node
"""
m = GPflow.param.Parameterized()
m.foo = GPflow.param.Parameterized()
m.foo.bar = GPflow.param.Parameterized()
with self.assertRaises(ValueError):
m.baz = m.foo.bar
def testReferenceAccross(self):
"""
Test we raise when we reference the same Parameterized object in a sibling node
"""
m = GPflow.param.Parameterized()
m.foo = GPflow.param.Parameterized()
m.foo.bar = GPflow.param.Parameterized()
m.boo = GPflow.param.Parameterized()
with self.assertRaises(ValueError):
m.boo.far = m.foo.bar
def testAddingToAnother(self):
"""
Adding the same Paramterized object to another tree is fine.
"""
m1 = GPflow.param.Parameterized()
m1.foo = GPflow.param.Parameterized()
m2 = GPflow.param.Parameterized()
m2.foo = m1.foo
def testReassign(self):
"""
We should be able to reassign the same value to the same param
"""
m1 = GPflow.param.Parameterized()
p = GPflow.param.Parameterized()
m1.foo = p # assign
m1.foo = p # reassign
class SingleParamInvariantTest(unittest.TestCase):
"""
Tests that invariants of only allowing a single reference to a given Param in a tree
"""
def setUp(self):
tf.reset_default_graph()
def testReferenceBelow(self):
"""
Test we raise when the same Param object is added further down the tree
"""
m = GPflow.param.Parameterized()
m.p = GPflow.param.Param(1)
m.foo = GPflow.param.Parameterized()
with self.assertRaises(ValueError):
m.foo.p = m.p
def testReferenceAbove(self):
"""
Test we raise when we reference the same Param object in a an ancestor node
"""
m = GPflow.param.Parameterized()
m.foo = GPflow.param.Parameterized()
m.foo.p = GPflow.param.Param(1)
with self.assertRaises(ValueError):
m.p = m.foo.p
def testReferenceAccross(self):
"""
Test we raise when we reference the same Param object in a sibling node
"""
m = GPflow.param.Parameterized()
m.foo = GPflow.param.Parameterized()
m.foo.p = GPflow.param.Param(1)
m.bar = GPflow.param.Parameterized()
with self.assertRaises(ValueError):
m.bar.p = m.foo.p
def testAddingToAnother(self):
"""
Adding the same Param object to another tree is fine.
"""
m1 = GPflow.param.Parameterized()
m1.foo = GPflow.param.Param(1)
m2 = GPflow.param.Parameterized()
m2.foo = m1.foo
def testReassign(self):
"""
We should be able to reassign the same value to the same param
"""
m1 = GPflow.param.Parameterized()
p = GPflow.param.Param(1)
m1.foo = p # assign
m1.foo = p # reassign
class TestParamList(unittest.TestCase):
def test_construction(self):
GPflow.param.ParamList([])
GPflow.param.ParamList([GPflow.param.Param(1)])
with self.assertRaises(AssertionError):
GPflow.param.ParamList([GPflow.param.Param(1), 'stringsnotallowed'])
with self.assertRaises(AssertionError):
# tuples not valid in constuctor:
GPflow.param.ParamList((GPflow.param.Param(1),))
with self.assertRaises(AssertionError):
# param objects not valid in constructor (must be in list)
GPflow.param.ParamList(GPflow.param.Param(1))
def test_naming(self):
p1 = GPflow.param.Param(1.2)
p2 = GPflow.param.Param(np.array([3.4, 5.6], np_float_type))
GPflow.param.ParamList([p1, p2])
self.assertTrue(p1.name == 'item0')
self.assertTrue(p2.name == 'item1')
def test_connected(self):
p1 = GPflow.param.Param(1.2)
p2 = GPflow.param.Param(np.array([3.4, 5.6], np_float_type))
l = GPflow.param.ParamList([p1, p2])
x = l.get_free_state()
x.sort()
self.assertTrue(np.all(x == np.array([1.2, 3.4, 5.6], np_float_type)))
def test_setitem(self):
p1 = GPflow.param.Param(1.2)
p2 = GPflow.param.Param(np.array([3.4, 5.6], np_float_type))
l = GPflow.param.ParamList([p1, p2])
l[0] = 1.2
self.assertTrue(p1._array == 1.2)
l[1] = np.array([1.1, 2.2], np_float_type)
self.assertTrue(np.all(p2._array == np.array([1.1, 2.2], np_float_type)))
with self.assertRaises(TypeError):
l[0] = GPflow.param.Param(12)
def test_append(self):
p1 = GPflow.param.Param(1.2)
p2 = GPflow.param.Param(np.array([3.4, 5.6], np_float_type))
l = GPflow.param.ParamList([p1])
l.append(p2)
self.assertTrue(p2 in l.sorted_params)
with self.assertRaises(AssertionError):
l.append('foo')
def test_len(self):
p1 = GPflow.param.Param(1.2)
p2 = GPflow.param.Param(np.array([3.4, 5.6], np_float_type))
l = GPflow.param.ParamList([p1])
l.append(p2)
self.assertTrue(len(l) == 2)
def test_with_parameterized(self):
pzd = GPflow.param.Parameterized()
p = GPflow.param.Param(1.2)
pzd.p = p
l = GPflow.param.ParamList([pzd])
# test assignment:
l[0].p = 5
self.assertTrue(l.get_free_state() == 5)
# test to make sure tf_mode get turned on and off
self.assertFalse(pzd._tf_mode)
with l.tf_mode():
self.assertTrue(pzd._tf_mode)
self.assertFalse(pzd._tf_mode)
def test_in_model(self):
class Foo(GPflow.model.Model):
def __init__(self):
GPflow.model.Model.__init__(self)
self.l = GPflow.param.ParamList([
GPflow.param.Param(1), GPflow.param.Param(12)])
def build_likelihood(self):
return -reduce(tf.add, [tf.square(x) for x in self.l])
m = Foo()
self.assertTrue(m.get_free_state().size == 2)
m.optimize(disp=False)
atol = 1e-6 if np_float_type is np.float32 else 1e-8
self.assertTrue(np.allclose(m.get_free_state(), 0., atol=atol))
class TestPickleAndDict(unittest.TestCase):
def setUp(self):
rng = np.random.RandomState(0)
X = rng.randn(10, 1)
Y = rng.randn(10, 1)
self.m = GPflow.gpr.GPR(X, Y, kern=GPflow.kernels.RBF(1))
def test(self):
# pickle and reload the model
s1 = pickle.dumps(self.m)
m1 = pickle.loads(s1)
d1 = self.m.get_parameter_dict()
d2 = m1.get_parameter_dict()
for key, val in d1.items():
assert np.all(val == d2[key])
class TestDictEmpty(unittest.TestCase):
def setUp(self):
self.m = GPflow.model.Model()
def test(self):
d = self.m.get_parameter_dict()
self.assertTrue(len(d.keys()) == 0)
self.m.set_parameter_dict(d)
class TestDictSimple(unittest.TestCase):
def setUp(self):
self.m = GPflow.model.Model()
self.m.p1 = GPflow.param.Param(np.random.randn(3, 2))
self.m.p2 = GPflow.param.Param(np.random.randn(10))
def test(self):
d = self.m.get_parameter_dict()
self.assertTrue(len(d.keys()) == 2)
state1 = self.m.get_free_state().copy()
self.m.set_state(state1 * 0)
self.m.set_parameter_dict(d)
self.assertTrue(np.all(state1 == self.m.get_free_state()))
class TestDictSVGP(unittest.TestCase):
def setUp(self):
self.rng = np.random.RandomState(0)
X = self.rng.randn(10, 1)
Y = self.rng.randn(10, 1)
Z = self.rng.randn(5, 1)
self.m = GPflow.svgp.SVGP(X, Y, Z=Z, likelihood=GPflow.likelihoods.Gaussian(), kern=GPflow.kernels.RBF(1))
def test(self):
loglik1 = self.m.compute_log_likelihood()
d = self.m.get_parameter_dict()
# muck up the model
self.m.set_state(self.rng.randn(self.m.get_free_state().size))
loglik2 = self.m.compute_log_likelihood()
# reset the model
self.m.set_parameter_dict(d)
loglik3 = self.m.compute_log_likelihood()
self.assertFalse(np.allclose(loglik1, loglik2))
self.assertTrue(np.allclose(loglik1, loglik3))
class TestFixWithPrior(unittest.TestCase):
"""
This tests that models with a fixed parameter which has a prior continue to work
"""
def test(self):
m = GPflow.model.Model()
m.p = GPflow.param.Param(1.0, GPflow.transforms.positive)
m.pp = GPflow.param.Param(1.0, GPflow.transforms.positive)
m.p.prior = GPflow.priors.Gamma(1, 1)
m.pp.prior = GPflow.priors.Gamma(1, 1)
m.p.fixed = True
m.build_likelihood = lambda: tf.zeros([1], tf.float64)
m.optimize(disp=1, maxiter=10)
class TestRandomizeDefault(unittest.TestCase):
"""
This tests that distributions can sample random values without priors
"""
def test(self):
np.random.seed(1)
m = GPflow.model.Model()
m.p = GPflow.param.Param(1.0)
m.pp = GPflow.param.Param(1.0, GPflow.transforms.Log1pe())
m.pf = GPflow.param.Param(1.0)
m.pf.fixed = True
m.pmd = GPflow.param.Param(np.ones((5, 2)))
ltr = GPflow.transforms.LowerTriangular(2).forward(np.ones(2 * 10))
m.pmd2 = GPflow.param.Param(ltr, transform=GPflow.transforms.LowerTriangular(2))
#should work as (pseudo) random vals a.s. are not 1.0
m.p.randomize()
self.assertFalse(m.p.value == 1.0)
m.pp.randomize()
self.assertFalse(m.pp.value == 1.0 or m.pp.value <= 0.0)
#check if fixing works
m.pf.randomize()
self.assertTrue(m.pf.value == 1.0)
m.pf.randomize(skipfixed=False)
self.assertFalse(m.pf.value == 1.0)
#check multidimensional
pmd_shape = m.pmd.shape
m.pmd.randomize()
self.assertFalse(np.any(m.pmd.value == 1.0))
self.assertEquals(m.pmd.shape, pmd_shape)
#check non size-preserving transform
pmd2_shape = m.pmd2.shape
m.pmd2.randomize()
self.assertFalse(np.any(m.pmd2.value == 1.0))
self.assertEquals(m.pmd2.shape, pmd2_shape)
class TestRandomizePrior(unittest.TestCase):
"""
This tests that distributions can sample random values from priors
"""
def test(self):
np.random.seed(1)
from inspect import getargspec
m = GPflow.model.Model()
m.p = GPflow.param.Param(1.0)
m.pmd = GPflow.param.Param(np.eye(5), transform=GPflow.transforms.DiagMatrix())
priors = [obj for obj in GPflow.priors.__dict__.values() if
isinstance(obj, type) and
issubclass(obj, GPflow.priors.Prior) and
obj is not GPflow.priors.Prior]
with self.assertRaises(NotImplementedError):
m.p = 1.0
m.p.prior = GPflow.priors.Prior()
m.p.randomize()
for prior in priors:
signature = getargspec(prior.__init__)
params = {}
if signature.defaults is not None:
param_names = signature.args[:-len(signature.defaults)]
else:
param_names = signature.args
for param in param_names:
if param not in params.keys() and param is not 'self':
params[param] = 1.
m.p = 1.0
m.p.prior = prior(**params)
m.pmd.prior = prior(**params)
m.p.randomize()
m.pmd.randomize()
self.assertFalse(m.p.value == 1.0)
self.assertFalse(np.any(m.pmd.value == np.ones(5)))
self.assertTrue(m.pmd.value.shape == (5,5))
class TestRandomizeFeedPriors(unittest.TestCase):
"""
Test if standard randomize behavior can be overriden using
distributions keyword.
"""
def test(self):
np.random.seed(1)
m = GPflow.model.Model()
m.p = GPflow.param.Param(1.0)
with self.assertRaises(NotImplementedError):
m.p.randomize(distributions={m.p: GPflow.priors.Prior()})
m.p.randomize(distributions={m.p: GPflow.priors.Gaussian(0, 1)})
self.assertFalse(m.p.value == 1.0)
class TestRandomizeHierarchical(unittest.TestCase):
"""
This tests that models can randomize all contained parameters
"""
def test(self):
np.random.seed(1)
m = GPflow.model.Model()
m.p = GPflow.param.Param(1.0)
m.p2 = GPflow.param.Param(1.0)
m.m = GPflow.model.Model()
m.m.p = GPflow.param.Param(1.0)
m.m.p2 = GPflow.param.Param(1.0)
m.p2.prior = GPflow.priors.Gaussian(0, 1)
m.m.p2.prior = GPflow.priors.Gaussian(0, 1)
m.randomize()
self.assertFalse(m.p.value == 1.0)
self.assertFalse(m.p2.value == 1.0)
self.assertFalse(m.m.p.value == 1.0)
self.assertFalse(m.m.p2.value == 1.0)
class TestScopes(unittest.TestCase):
def setUp(self):
rng = np.random.RandomState(0)
X = rng.randn(10, 1)
k = GPflow.kernels.RBF(1)
Y = rng.randn(10, 1)
self.m = GPflow.gpr.GPR(X, Y, k)
self.m._compile()
def test_likelihood_name(self):
with self.m.tf_mode():
with self.m._graph.as_default():
l = self.m.build_likelihood()
expected_name = self.m.name + '.build_likelihood'
self.assertTrue(expected_name in l.name)
def test_kern_name(self):
with self.m.tf_mode():
with self.m._graph.as_default():
K = self.m.kern.K(self.m.X)
self.assertTrue('kern.K' in K.name)
if __name__ == "__main__":
unittest.main()
Computing file changes ...