Revision ea164d73a7a0b2b2be3a1d8c2a8a4dab8999fa9c authored by Andrea Arcangeli on 28 November 2005, 21:44:15 UTC, committed by Linus Torvalds on 28 November 2005, 22:42:26 UTC
With Andrew Morton <akpm@osdl.org>

The slab scanning code tries to balance the scanning rate of slabs versus the
scanning rate of LRU pages.  To do this, it retains state concerning how many
slabs have been scanned - if a particular slab shrinker didn't scan enough
objects, we remember that for next time, and scan more objects on the next
pass.

The problem with this is that with (say) a huge number of GFP_NOIO
direct-reclaim attempts, the number of objects which are to be scanned when we
finally get a GFP_KERNEL request can be huge.  Because some shrinker handlers
just bail out if !__GFP_FS.

So the patch clamps the number of objects-to-be-scanned to 2* the total number
of objects in the slab cache.

Signed-off-by: Andrea Arcangeli <andrea@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
1 parent 154f484
Raw File
rcupdate.c
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2001
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 * 
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 * Papers:
 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
 *
 * For detailed explanation of Read-Copy Update mechanism see -
 * 		http://lse.sourceforge.net/locking/rcupdate.html
 *
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <asm/atomic.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/rcupdate.h>
#include <linux/rcuref.h>
#include <linux/cpu.h>

/* Definition for rcupdate control block. */
struct rcu_ctrlblk rcu_ctrlblk = 
	{ .cur = -300, .completed = -300 };
struct rcu_ctrlblk rcu_bh_ctrlblk =
	{ .cur = -300, .completed = -300 };

/* Bookkeeping of the progress of the grace period */
struct rcu_state {
	spinlock_t	lock; /* Guard this struct and writes to rcu_ctrlblk */
	cpumask_t	cpumask; /* CPUs that need to switch in order    */
	                              /* for current batch to proceed.        */
};

static struct rcu_state rcu_state ____cacheline_maxaligned_in_smp =
	  {.lock = SPIN_LOCK_UNLOCKED, .cpumask = CPU_MASK_NONE };
static struct rcu_state rcu_bh_state ____cacheline_maxaligned_in_smp =
	  {.lock = SPIN_LOCK_UNLOCKED, .cpumask = CPU_MASK_NONE };

DEFINE_PER_CPU(struct rcu_data, rcu_data) = { 0L };
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data) = { 0L };

/* Fake initialization required by compiler */
static DEFINE_PER_CPU(struct tasklet_struct, rcu_tasklet) = {NULL};
static int maxbatch = 10000;

#ifndef __HAVE_ARCH_CMPXCHG
/*
 * We use an array of spinlocks for the rcurefs -- similar to ones in sparc
 * 32 bit atomic_t implementations, and a hash function similar to that
 * for our refcounting needs.
 * Can't help multiprocessors which donot have cmpxchg :(
 */

spinlock_t __rcuref_hash[RCUREF_HASH_SIZE] = {
	[0 ... (RCUREF_HASH_SIZE-1)] = SPIN_LOCK_UNLOCKED
};
#endif

/**
 * call_rcu - Queue an RCU callback for invocation after a grace period.
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual update function to be invoked after the grace period
 *
 * The update function will be invoked some time after a full grace
 * period elapses, in other words after all currently executing RCU
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
 * and may be nested.
 */
void fastcall call_rcu(struct rcu_head *head,
				void (*func)(struct rcu_head *rcu))
{
	unsigned long flags;
	struct rcu_data *rdp;

	head->func = func;
	head->next = NULL;
	local_irq_save(flags);
	rdp = &__get_cpu_var(rcu_data);
	*rdp->nxttail = head;
	rdp->nxttail = &head->next;

	if (unlikely(++rdp->count > 10000))
		set_need_resched();

	local_irq_restore(flags);
}

/**
 * call_rcu_bh - Queue an RCU for invocation after a quicker grace period.
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual update function to be invoked after the grace period
 *
 * The update function will be invoked some time after a full grace
 * period elapses, in other words after all currently executing RCU
 * read-side critical sections have completed. call_rcu_bh() assumes
 * that the read-side critical sections end on completion of a softirq
 * handler. This means that read-side critical sections in process
 * context must not be interrupted by softirqs. This interface is to be
 * used when most of the read-side critical sections are in softirq context.
 * RCU read-side critical sections are delimited by rcu_read_lock() and
 * rcu_read_unlock(), * if in interrupt context or rcu_read_lock_bh()
 * and rcu_read_unlock_bh(), if in process context. These may be nested.
 */
void fastcall call_rcu_bh(struct rcu_head *head,
				void (*func)(struct rcu_head *rcu))
{
	unsigned long flags;
	struct rcu_data *rdp;

	head->func = func;
	head->next = NULL;
	local_irq_save(flags);
	rdp = &__get_cpu_var(rcu_bh_data);
	*rdp->nxttail = head;
	rdp->nxttail = &head->next;
	rdp->count++;
/*
 *  Should we directly call rcu_do_batch() here ?
 *  if (unlikely(rdp->count > 10000))
 *      rcu_do_batch(rdp);
 */
	local_irq_restore(flags);
}

/*
 * Return the number of RCU batches processed thus far.  Useful
 * for debug and statistics.
 */
long rcu_batches_completed(void)
{
	return rcu_ctrlblk.completed;
}

/*
 * Invoke the completed RCU callbacks. They are expected to be in
 * a per-cpu list.
 */
static void rcu_do_batch(struct rcu_data *rdp)
{
	struct rcu_head *next, *list;
	int count = 0;

	list = rdp->donelist;
	while (list) {
		next = rdp->donelist = list->next;
		list->func(list);
		list = next;
		rdp->count--;
		if (++count >= maxbatch)
			break;
	}
	if (!rdp->donelist)
		rdp->donetail = &rdp->donelist;
	else
		tasklet_schedule(&per_cpu(rcu_tasklet, rdp->cpu));
}

/*
 * Grace period handling:
 * The grace period handling consists out of two steps:
 * - A new grace period is started.
 *   This is done by rcu_start_batch. The start is not broadcasted to
 *   all cpus, they must pick this up by comparing rcp->cur with
 *   rdp->quiescbatch. All cpus are recorded  in the
 *   rcu_state.cpumask bitmap.
 * - All cpus must go through a quiescent state.
 *   Since the start of the grace period is not broadcasted, at least two
 *   calls to rcu_check_quiescent_state are required:
 *   The first call just notices that a new grace period is running. The
 *   following calls check if there was a quiescent state since the beginning
 *   of the grace period. If so, it updates rcu_state.cpumask. If
 *   the bitmap is empty, then the grace period is completed.
 *   rcu_check_quiescent_state calls rcu_start_batch(0) to start the next grace
 *   period (if necessary).
 */
/*
 * Register a new batch of callbacks, and start it up if there is currently no
 * active batch and the batch to be registered has not already occurred.
 * Caller must hold rcu_state.lock.
 */
static void rcu_start_batch(struct rcu_ctrlblk *rcp, struct rcu_state *rsp,
				int next_pending)
{
	if (next_pending)
		rcp->next_pending = 1;

	if (rcp->next_pending &&
			rcp->completed == rcp->cur) {
		/* Can't change, since spin lock held. */
		cpus_andnot(rsp->cpumask, cpu_online_map, nohz_cpu_mask);

		rcp->next_pending = 0;
		/* next_pending == 0 must be visible in __rcu_process_callbacks()
		 * before it can see new value of cur.
		 */
		smp_wmb();
		rcp->cur++;
	}
}

/*
 * cpu went through a quiescent state since the beginning of the grace period.
 * Clear it from the cpu mask and complete the grace period if it was the last
 * cpu. Start another grace period if someone has further entries pending
 */
static void cpu_quiet(int cpu, struct rcu_ctrlblk *rcp, struct rcu_state *rsp)
{
	cpu_clear(cpu, rsp->cpumask);
	if (cpus_empty(rsp->cpumask)) {
		/* batch completed ! */
		rcp->completed = rcp->cur;
		rcu_start_batch(rcp, rsp, 0);
	}
}

/*
 * Check if the cpu has gone through a quiescent state (say context
 * switch). If so and if it already hasn't done so in this RCU
 * quiescent cycle, then indicate that it has done so.
 */
static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp,
			struct rcu_state *rsp, struct rcu_data *rdp)
{
	if (rdp->quiescbatch != rcp->cur) {
		/* start new grace period: */
		rdp->qs_pending = 1;
		rdp->passed_quiesc = 0;
		rdp->quiescbatch = rcp->cur;
		return;
	}

	/* Grace period already completed for this cpu?
	 * qs_pending is checked instead of the actual bitmap to avoid
	 * cacheline trashing.
	 */
	if (!rdp->qs_pending)
		return;

	/* 
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
	if (!rdp->passed_quiesc)
		return;
	rdp->qs_pending = 0;

	spin_lock(&rsp->lock);
	/*
	 * rdp->quiescbatch/rcp->cur and the cpu bitmap can come out of sync
	 * during cpu startup. Ignore the quiescent state.
	 */
	if (likely(rdp->quiescbatch == rcp->cur))
		cpu_quiet(rdp->cpu, rcp, rsp);

	spin_unlock(&rsp->lock);
}


#ifdef CONFIG_HOTPLUG_CPU

/* warning! helper for rcu_offline_cpu. do not use elsewhere without reviewing
 * locking requirements, the list it's pulling from has to belong to a cpu
 * which is dead and hence not processing interrupts.
 */
static void rcu_move_batch(struct rcu_data *this_rdp, struct rcu_head *list,
				struct rcu_head **tail)
{
	local_irq_disable();
	*this_rdp->nxttail = list;
	if (list)
		this_rdp->nxttail = tail;
	local_irq_enable();
}

static void __rcu_offline_cpu(struct rcu_data *this_rdp,
	struct rcu_ctrlblk *rcp, struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* if the cpu going offline owns the grace period
	 * we can block indefinitely waiting for it, so flush
	 * it here
	 */
	spin_lock_bh(&rsp->lock);
	if (rcp->cur != rcp->completed)
		cpu_quiet(rdp->cpu, rcp, rsp);
	spin_unlock_bh(&rsp->lock);
	rcu_move_batch(this_rdp, rdp->curlist, rdp->curtail);
	rcu_move_batch(this_rdp, rdp->nxtlist, rdp->nxttail);

}
static void rcu_offline_cpu(int cpu)
{
	struct rcu_data *this_rdp = &get_cpu_var(rcu_data);
	struct rcu_data *this_bh_rdp = &get_cpu_var(rcu_bh_data);

	__rcu_offline_cpu(this_rdp, &rcu_ctrlblk, &rcu_state,
					&per_cpu(rcu_data, cpu));
	__rcu_offline_cpu(this_bh_rdp, &rcu_bh_ctrlblk, &rcu_bh_state,
					&per_cpu(rcu_bh_data, cpu));
	put_cpu_var(rcu_data);
	put_cpu_var(rcu_bh_data);
	tasklet_kill_immediate(&per_cpu(rcu_tasklet, cpu), cpu);
}

#else

static void rcu_offline_cpu(int cpu)
{
}

#endif

/*
 * This does the RCU processing work from tasklet context. 
 */
static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp,
			struct rcu_state *rsp, struct rcu_data *rdp)
{
	if (rdp->curlist && !rcu_batch_before(rcp->completed, rdp->batch)) {
		*rdp->donetail = rdp->curlist;
		rdp->donetail = rdp->curtail;
		rdp->curlist = NULL;
		rdp->curtail = &rdp->curlist;
	}

	local_irq_disable();
	if (rdp->nxtlist && !rdp->curlist) {
		rdp->curlist = rdp->nxtlist;
		rdp->curtail = rdp->nxttail;
		rdp->nxtlist = NULL;
		rdp->nxttail = &rdp->nxtlist;
		local_irq_enable();

		/*
		 * start the next batch of callbacks
		 */

		/* determine batch number */
		rdp->batch = rcp->cur + 1;
		/* see the comment and corresponding wmb() in
		 * the rcu_start_batch()
		 */
		smp_rmb();

		if (!rcp->next_pending) {
			/* and start it/schedule start if it's a new batch */
			spin_lock(&rsp->lock);
			rcu_start_batch(rcp, rsp, 1);
			spin_unlock(&rsp->lock);
		}
	} else {
		local_irq_enable();
	}
	rcu_check_quiescent_state(rcp, rsp, rdp);
	if (rdp->donelist)
		rcu_do_batch(rdp);
}

static void rcu_process_callbacks(unsigned long unused)
{
	__rcu_process_callbacks(&rcu_ctrlblk, &rcu_state,
				&__get_cpu_var(rcu_data));
	__rcu_process_callbacks(&rcu_bh_ctrlblk, &rcu_bh_state,
				&__get_cpu_var(rcu_bh_data));
}

void rcu_check_callbacks(int cpu, int user)
{
	if (user || 
	    (idle_cpu(cpu) && !in_softirq() && 
				hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
		rcu_qsctr_inc(cpu);
		rcu_bh_qsctr_inc(cpu);
	} else if (!in_softirq())
		rcu_bh_qsctr_inc(cpu);
	tasklet_schedule(&per_cpu(rcu_tasklet, cpu));
}

static void rcu_init_percpu_data(int cpu, struct rcu_ctrlblk *rcp,
						struct rcu_data *rdp)
{
	memset(rdp, 0, sizeof(*rdp));
	rdp->curtail = &rdp->curlist;
	rdp->nxttail = &rdp->nxtlist;
	rdp->donetail = &rdp->donelist;
	rdp->quiescbatch = rcp->completed;
	rdp->qs_pending = 0;
	rdp->cpu = cpu;
}

static void __devinit rcu_online_cpu(int cpu)
{
	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
	struct rcu_data *bh_rdp = &per_cpu(rcu_bh_data, cpu);

	rcu_init_percpu_data(cpu, &rcu_ctrlblk, rdp);
	rcu_init_percpu_data(cpu, &rcu_bh_ctrlblk, bh_rdp);
	tasklet_init(&per_cpu(rcu_tasklet, cpu), rcu_process_callbacks, 0UL);
}

static int __devinit rcu_cpu_notify(struct notifier_block *self, 
				unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	switch (action) {
	case CPU_UP_PREPARE:
		rcu_online_cpu(cpu);
		break;
	case CPU_DEAD:
		rcu_offline_cpu(cpu);
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

static struct notifier_block __devinitdata rcu_nb = {
	.notifier_call	= rcu_cpu_notify,
};

/*
 * Initializes rcu mechanism.  Assumed to be called early.
 * That is before local timer(SMP) or jiffie timer (uniproc) is setup.
 * Note that rcu_qsctr and friends are implicitly
 * initialized due to the choice of ``0'' for RCU_CTR_INVALID.
 */
void __init rcu_init(void)
{
	rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	/* Register notifier for non-boot CPUs */
	register_cpu_notifier(&rcu_nb);
}

struct rcu_synchronize {
	struct rcu_head head;
	struct completion completion;
};

/* Because of FASTCALL declaration of complete, we use this wrapper */
static void wakeme_after_rcu(struct rcu_head  *head)
{
	struct rcu_synchronize *rcu;

	rcu = container_of(head, struct rcu_synchronize, head);
	complete(&rcu->completion);
}

/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
 * and may be nested.
 *
 * If your read-side code is not protected by rcu_read_lock(), do -not-
 * use synchronize_rcu().
 */
void synchronize_rcu(void)
{
	struct rcu_synchronize rcu;

	init_completion(&rcu.completion);
	/* Will wake me after RCU finished */
	call_rcu(&rcu.head, wakeme_after_rcu);

	/* Wait for it */
	wait_for_completion(&rcu.completion);
}

/*
 * Deprecated, use synchronize_rcu() or synchronize_sched() instead.
 */
void synchronize_kernel(void)
{
	synchronize_rcu();
}

module_param(maxbatch, int, 0);
EXPORT_SYMBOL_GPL(rcu_batches_completed);
EXPORT_SYMBOL(call_rcu);  /* WARNING: GPL-only in April 2006. */
EXPORT_SYMBOL(call_rcu_bh);  /* WARNING: GPL-only in April 2006. */
EXPORT_SYMBOL_GPL(synchronize_rcu);
EXPORT_SYMBOL(synchronize_kernel);  /* WARNING: GPL-only in April 2006. */
back to top