Revision ecc02a93ab91dcf160aeb7d64a1954671e83ddde authored by Mark Clements on 01 November 2018, 21:30:03 UTC, committed by cran-robot on 01 November 2018, 21:30:03 UTC
1 parent 4f6cced
Raw File
math.org

* Axiom/Fricas source file

** General case

#+begin_src axiom :exports results :results output
)cl p all
η := operator 'η
G := operator 'G
rule1 := rule (D(η(t,β),β)==X; D(η(t,β),t)==XD*β; D(η(t,β),[t,β])==XD; η(t,β)==X*β)
S := G(η(t,β))
H := -log(S)
h := D(H,t)
[D(expr,β) for expr in [S,H,h]]
[rule1 expr for expr in [S,H,h]]
[rule1 D(expr,β) for expr in [S,H,h]]
#+end_src

#+RESULTS:
#+begin_example
(1) -> )cl p all
(1) -> η := operator 'η
 
   (1)  η
                                                          Type: BasicOperator
(2) -> G := operator 'G
 
   (2)  G
                                                          Type: BasicOperator
(3) -> rule1 := rule (D(η(t,β),β)==X; D(η(t,β),t)==XD*β; D(η(t,β),[t,β])==XD; η(t,β)==X*β)
 
   (3)  {η  (t,β) == X,η  (t,β) == XD β,η    (t,β) == XD,η(t,β) == X β}
          ,2            ,1               ,1,2
                           Type: Ruleset(Integer,Integer,Expression(Integer))
(4) -> S := G(η(t,β))
 
   (4)  G(η(t,β))
                                                    Type: Expression(Integer)
(5) -> H := -log(S)
 
   (5)  - log(G(η(t,β)))
                                                    Type: Expression(Integer)
(6) -> h := D(H,t)
 
           ,
          G (η(t,β))η  (t,β)
                     ,1
   (6)  - ------------------
               G(η(t,β))
                                                    Type: Expression(Integer)
(7) -> [D(expr,β) for expr in [S,H,h]]
 
   (7)
                           ,
                          G (η(t,β))η  (t,β)
     ,                               ,2
   [G (η(t,β))η  (t,β), - ------------------,
               ,2              G(η(t,β))

                     ,                                               ,,
         - G(η(t,β))G (η(t,β))η    (t,β) - G(η(t,β))η  (t,β)η  (t,β)G  (η(t,β))
                               ,1,2                  ,1      ,2
       + 
          ,        2
         G (η(t,β)) η  (t,β)η  (t,β)
                     ,1      ,2
    /
                2
       G(η(t,β))
     ]
                                              Type: List(Expression(Integer))
(8) -> [rule1 expr for expr in [S,H,h]]
 
                                     ,
                                XD βG (X β)

   (8)  [G(X β),- log(G(X β)),- -----------]
                                   G(X β)
                                              Type: List(Expression(Integer))
(9) -> [rule1 D(expr,β) for expr in [S,H,h]]
 
   (9)
                  ,
                XG (X β)
      ,
   [XG (X β), - --------,
                 G(X β)
                    ,,                ,     2             ,
    - X XD β G(X β)G  (X β) + X XD β G (X β)  - XD G(X β)G (X β)

    ------------------------------------------------------------]
                                     2
                               G(X β)
                                              Type: List(Expression(Integer))
 
#+end_example

** Proportional hazards
#+begin_src axiom :exports results :results output
G(x) == exp(-exp(x))
S := G(η(t,β))
H := -log(S)
h := D(H,t)
D(G(x),x)
[rule1 expr for expr in [S,H,h]]
[rule1 D(expr,β) for expr in [S,H,h]]
#+end_src

#+RESULTS:
#+begin_example
(10) -> G(x) == exp(-exp(x))
                                                                   Type: Void
(11) -> S := G(η(t,β))
    Compiling function G with type Expression(Integer) -> Expression(
      Integer) 

               η(t,β)
           - %e
   (11)  %e
                                                    Type: Expression(Integer)
(12) -> H := -log(S)
 
           η(t,β)
   (12)  %e
                                                    Type: Expression(Integer)
(13) -> h := D(H,t)
 
           η(t,β)
   (13)  %e      η  (t,β)
                  ,1
                                                    Type: Expression(Integer)
(14) -> D(G(x),x)
    Compiling function G with type Variable(x) -> Expression(Integer) 

                    x
             x  - %e
   (14)  - %e %e
                                                    Type: Expression(Integer)
(15) -> [rule1 expr for expr in [S,H,h]]
 
                X β
            - %e      X β        X β
   (15)  [%e       ,%e   ,XD β %e   ]
                                              Type: List(Expression(Integer))
(16) -> [rule1 D(expr,β) for expr in [S,H,h]]
 
                         X β
                X β  - %e        X β                X β
   (16)  [- X %e   %e       ,X %e   ,(X XD β + XD)%e   ]
                                              Type: List(Expression(Integer))
 
#+end_example


** Proportional odds

#+begin_src axiom :exports results :results output
G(x) == 1/(1+exp(x))
S := G(η(t,β))
H := -log(S)
h := D(H,t)
D(G(x),x)
[rule1 expr for expr in [S,H,h]]
[rule1 D(expr,β) for expr in [S,H,h]]
#+end_src

#+RESULTS:
#+begin_example
(17) -> G(x) == 1/(1+exp(x))
   Compiled code for G has been cleared.
   1 old definition(s) deleted for function or rule G 
                                                                   Type: Void
(18) -> S := G(η(t,β))
    Compiling function G with type Expression(Integer) -> Expression(
      Integer) 

               1
   (18)  ------------
           η(t,β)
         %e       + 1
                                                    Type: Expression(Integer)
(19) -> H := -log(S)
 
                     1
   (19)  - log(------------)
                 η(t,β)
               %e       + 1
                                                    Type: Expression(Integer)
(20) -> h := D(H,t)
 
           η(t,β)
         %e      η  (t,β)
                  ,1
   (20)  ----------------
             η(t,β)
           %e       + 1
                                                    Type: Expression(Integer)
(21) -> D(G(x),x)
    Compiling function G with type Variable(x) -> Expression(Integer) 

                    x
                  %e
   (21)  - -----------------
              x 2      x
           (%e )  + 2%e  + 1
                                                    Type: Expression(Integer)
(22) -> [rule1 expr for expr in [S,H,h]]
 
                                            X β
              1               1      XD β %e
   (22)  [---------,- log(---------),----------]
            X β             X β         X β
          %e    + 1       %e    + 1   %e    + 1
                                              Type: List(Expression(Integer))
(23) -> [rule1 D(expr,β) for expr in [S,H,h]]
 
                       X β             X β        X β 2                  X β
                   X %e            X %e     XD (%e   )  + (X XD β + XD)%e
   (23)  [- ---------------------,---------,--------------------------------]
               X β 2      X β       X β              X β 2      X β
            (%e   )  + 2%e    + 1 %e    + 1       (%e   )  + 2%e    + 1
                                              Type: List(Expression(Integer))
 
#+end_example


** Probit 

Is there a more canonical approach in Axiom?

#+begin_src axiom :exports results :results output
Φ := operator 'Φ
φ := operator 'φ
rule2 == rule D(Φ(x),x)==φ(x)
G(x) == Φ(-x)
S := G(η(t,β))
H := -log(S)
h := D(H,t)
rule2 D(G(x),x)
[rule1 rule2 expr for expr in [S,H,h]]
[rule1 rule2 D(expr,β) for expr in [S,H,h]]
#+end_src

#+RESULTS:
#+begin_example
(24) -> Φ := operator 'Φ

   (24)  Φ
                                                          Type: BasicOperator
(25) -> φ := operator 'φ
 
   (25)  φ
                                                          Type: BasicOperator
(26) -> rule2 == rule D(Φ(x),x)==φ(x)
                                                                    Type: Void
(27) -> G(x) == Φ(-x)
    Compiled code for G has been cleared.
   1 old definition(s) deleted for function or rule G 
                                                                   Type: Void
(28) -> S := G(η(t,β))
    Compiling function G with type Expression(Integer) -> Expression(
      Integer) 

   (28)  Φ(- η(t,β))
                                                    Type: Expression(Integer)
(29) -> H := -log(S)
 
   (29)  - log(Φ(- η(t,β)))
                                                    Type: Expression(Integer)
(30) -> h := D(H,t)
 
          ,
         Φ (- η(t,β))η  (t,β)
                      ,1
   (30)  --------------------
              Φ(- η(t,β))
                                                    Type: Expression(Integer)
(31) -> rule2 D(G(x),x)
    Compiling function G with type Variable(x) -> Expression(Integer) 
   Compiling body of rule rule2 to compute value of type RewriteRule(
      Integer,Integer,Expression(Integer)) 

   (31)  - φ(- x)
                                                    Type: Expression(Integer)
(32) -> [rule1 rule2 expr for expr in [S,H,h]]
 
                                   XD β φ(- X β)
   (32)  [Φ(- X β),- log(Φ(- X β)),-------------]
                                      Φ(- X β)
                                              Type: List(Expression(Integer))
(33) -> [rule1 rule2 D(expr,β) for expr in [S,H,h]]
 
   (33)
                  X φ(- X β)
   [- X φ(- X β), ----------,
                   Φ(- X β)
                      ,                         2
    - X XD β Φ(- X β)φ (- X β) + X XD β φ(- X β)  + XD Φ(- X β)φ(- X β)

    -------------------------------------------------------------------]
                                         2
                                 Φ(- X β)
                                              Type: List(Expression(Integer))
 
#+end_example

** Additive hazards


#+begin_src axiom :exports results :results output
G(x) == exp(-x)
S := G(η(t,β))
H := -log(S)
h := D(H,t)
D(G(x),x)
[rule1 expr for expr in [S,H,h]]
[rule1 D(expr,β) for expr in [S,H,h]]
#+end_src

#+RESULTS:
#+begin_example
(34) -> G(x) == exp(-x)
   Compiled code for G has been cleared.
   1 old definition(s) deleted for function or rule G 
                                                                   Type: Void
(35) -> S := G(η(t,β))
    Compiling function G with type Expression(Integer) -> Expression(
      Integer) 

           - η(t,β)
   (35)  %e
                                                    Type: Expression(Integer)
(36) -> H := -log(S)
 
   (36)  η(t,β)
                                                    Type: Expression(Integer)
(37) -> h := D(H,t)
 
   (37)  η  (t,β)
          ,1
                                                    Type: Expression(Integer)
(38) -> D(G(x),x)
    Compiling function G with type Variable(x) -> Expression(Integer) 

             - x
   (38)  - %e
                                                    Type: Expression(Integer)
(39) -> [rule1 expr for expr in [S,H,h]]
 
            - X β
   (39)  [%e     ,X β,XD β]
                                              Type: List(Expression(Integer))
(40) -> [rule1 D(expr,β) for expr in [S,H,h]]
 
                - X β
   (40)  [- X %e     ,X,XD]
                                              Type: List(Expression(Integer))
 
#+end_example

** Aranda-Ordaz
#+begin_src axiom :exports results :results output
G(x) == exp(-log(θ*exp(x)+1)/θ)
S := G(η(t,β))
H := -log(S)
h := D(H,t)
D(G(x),x)
[rule1 expr for expr in [S,H,h]]
[rule1 D(expr,β) for expr in [S,H,h]]
#+end_src

#+RESULTS:
#+begin_example
(41) -> G(x) == exp(-log(θ*exp(x)+1)/θ)
   Compiled code for G has been cleared.
   1 old definition(s) deleted for function or rule G 
                                                                   Type: Void
(42) -> S := G(η(t,β))
    Compiling function G with type Expression(Integer) -> Expression(
      Integer) 

                     η(t,β)
             log(θ %e       + 1)
           - -------------------
                      θ
   (42)  %e
                                                    Type: Expression(Integer)
(43) -> H := -log(S)
 
                 η(t,β)
         log(θ %e       + 1)
   (43)  -------------------
                  θ
                                                    Type: Expression(Integer)
(44) -> h := D(H,t)
 
           η(t,β)
         %e      η  (t,β)
                  ,1
   (44)  ----------------
              η(t,β)
          θ %e       + 1
                                                    Type: Expression(Integer)
(45) -> D(G(x),x)
    Compiling function G with type Variable(x) -> Expression(Integer) 

                          x
                  log(θ %e  + 1)
                - --------------
             x           θ
           %e %e
   (45)  - ---------------------
                     x
                 θ %e  + 1
                                                    Type: Expression(Integer)
(46) -> [rule1 expr for expr in [S,H,h]]
 
                      X β
              log(θ %e    + 1)
            - ----------------         X β              X β
                      θ        log(θ %e    + 1)  XD β %e
   (46)  [%e                  ,----------------,-----------]
                                       θ            X β
                                                θ %e    + 1
                                              Type: List(Expression(Integer))
(47) -> [rule1 D(expr,β) for expr in [S,H,h]]
 
   (47)
                         X β
                 log(θ %e    + 1)
               - ----------------
          X β            θ               X β
      X %e   %e                      X %e
   [- ---------------------------, -----------,
                  X β                  X β
              θ %e    + 1          θ %e    + 1
            X β 2                  X β
    XD θ (%e   )  + (X XD β + XD)%e
    ----------------------------------]
          2   X β 2        X β
         θ (%e   )  + 2θ %e    + 1
                                              Type: List(Expression(Integer))
 
#+end_example

** Other links

The development for other links would be similar.
back to top