https://github.com/torvalds/linux
Revision f10a3a32ae2edbe94920ce6827f4c2550eb6ed48 authored by Linus Torvalds on 05 December 2008, 21:30:03 UTC, committed by Linus Torvalds on 05 December 2008, 21:30:03 UTC
This reverts commit 558073dd56707864f09d563b64e7c37c021e89d2, along with
the failed try to fix the regression it caused ("ACPI: Fix ACPI battery
regression introduced by commit 558073"), which just made things worse.

Commit aaad077638be1a25871bcae5e43952d6b63abfca (that failed "Fix ACPI
battery regression") got the voltage conversion confused, and fixed the
problem with Rafael's battery monitor apparently just by mistake.

So revert them both, getting us back to the 2.6.27 state in this, and
let's revisit it when people understand what's going on.

Noted-by: Paul Martin <pm@debian.org>
Requested-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Len Brown <len.brown@intel.com>
Cc: Alexey Starikovskiy <astarikovskiy@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1 parent bbeba4c
Raw File
Tip revision: f10a3a32ae2edbe94920ce6827f4c2550eb6ed48 authored by Linus Torvalds on 05 December 2008, 21:30:03 UTC
Revert "ACPI: battery: Convert discharge energy rate to current properly"
Tip revision: f10a3a3
smp.c
/*
 * Generic helpers for smp ipi calls
 *
 * (C) Jens Axboe <jens.axboe@oracle.com> 2008
 *
 */
#include <linux/init.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/rcupdate.h>
#include <linux/rculist.h>
#include <linux/smp.h>

static DEFINE_PER_CPU(struct call_single_queue, call_single_queue);
static LIST_HEAD(call_function_queue);
__cacheline_aligned_in_smp DEFINE_SPINLOCK(call_function_lock);

enum {
	CSD_FLAG_WAIT		= 0x01,
	CSD_FLAG_ALLOC		= 0x02,
};

struct call_function_data {
	struct call_single_data csd;
	spinlock_t lock;
	unsigned int refs;
	cpumask_t cpumask;
	struct rcu_head rcu_head;
};

struct call_single_queue {
	struct list_head list;
	spinlock_t lock;
};

static int __cpuinit init_call_single_data(void)
{
	int i;

	for_each_possible_cpu(i) {
		struct call_single_queue *q = &per_cpu(call_single_queue, i);

		spin_lock_init(&q->lock);
		INIT_LIST_HEAD(&q->list);
	}
	return 0;
}
early_initcall(init_call_single_data);

static void csd_flag_wait(struct call_single_data *data)
{
	/* Wait for response */
	do {
		if (!(data->flags & CSD_FLAG_WAIT))
			break;
		cpu_relax();
	} while (1);
}

/*
 * Insert a previously allocated call_single_data element for execution
 * on the given CPU. data must already have ->func, ->info, and ->flags set.
 */
static void generic_exec_single(int cpu, struct call_single_data *data)
{
	struct call_single_queue *dst = &per_cpu(call_single_queue, cpu);
	int wait = data->flags & CSD_FLAG_WAIT, ipi;
	unsigned long flags;

	spin_lock_irqsave(&dst->lock, flags);
	ipi = list_empty(&dst->list);
	list_add_tail(&data->list, &dst->list);
	spin_unlock_irqrestore(&dst->lock, flags);

	/*
	 * Make the list addition visible before sending the ipi.
	 */
	smp_mb();

	if (ipi)
		arch_send_call_function_single_ipi(cpu);

	if (wait)
		csd_flag_wait(data);
}

static void rcu_free_call_data(struct rcu_head *head)
{
	struct call_function_data *data;

	data = container_of(head, struct call_function_data, rcu_head);

	kfree(data);
}

/*
 * Invoked by arch to handle an IPI for call function. Must be called with
 * interrupts disabled.
 */
void generic_smp_call_function_interrupt(void)
{
	struct call_function_data *data;
	int cpu = get_cpu();

	/*
	 * It's ok to use list_for_each_rcu() here even though we may delete
	 * 'pos', since list_del_rcu() doesn't clear ->next
	 */
	rcu_read_lock();
	list_for_each_entry_rcu(data, &call_function_queue, csd.list) {
		int refs;

		if (!cpu_isset(cpu, data->cpumask))
			continue;

		data->csd.func(data->csd.info);

		spin_lock(&data->lock);
		cpu_clear(cpu, data->cpumask);
		WARN_ON(data->refs == 0);
		data->refs--;
		refs = data->refs;
		spin_unlock(&data->lock);

		if (refs)
			continue;

		spin_lock(&call_function_lock);
		list_del_rcu(&data->csd.list);
		spin_unlock(&call_function_lock);

		if (data->csd.flags & CSD_FLAG_WAIT) {
			/*
			 * serialize stores to data with the flag clear
			 * and wakeup
			 */
			smp_wmb();
			data->csd.flags &= ~CSD_FLAG_WAIT;
		}
		if (data->csd.flags & CSD_FLAG_ALLOC)
			call_rcu(&data->rcu_head, rcu_free_call_data);
	}
	rcu_read_unlock();

	put_cpu();
}

/*
 * Invoked by arch to handle an IPI for call function single. Must be called
 * from the arch with interrupts disabled.
 */
void generic_smp_call_function_single_interrupt(void)
{
	struct call_single_queue *q = &__get_cpu_var(call_single_queue);
	LIST_HEAD(list);

	/*
	 * Need to see other stores to list head for checking whether
	 * list is empty without holding q->lock
	 */
	smp_read_barrier_depends();
	while (!list_empty(&q->list)) {
		unsigned int data_flags;

		spin_lock(&q->lock);
		list_replace_init(&q->list, &list);
		spin_unlock(&q->lock);

		while (!list_empty(&list)) {
			struct call_single_data *data;

			data = list_entry(list.next, struct call_single_data,
						list);
			list_del(&data->list);

			/*
			 * 'data' can be invalid after this call if
			 * flags == 0 (when called through
			 * generic_exec_single(), so save them away before
			 * making the call.
			 */
			data_flags = data->flags;

			data->func(data->info);

			if (data_flags & CSD_FLAG_WAIT) {
				smp_wmb();
				data->flags &= ~CSD_FLAG_WAIT;
			} else if (data_flags & CSD_FLAG_ALLOC)
				kfree(data);
		}
		/*
		 * See comment on outer loop
		 */
		smp_read_barrier_depends();
	}
}

/*
 * smp_call_function_single - Run a function on a specific CPU
 * @func: The function to run. This must be fast and non-blocking.
 * @info: An arbitrary pointer to pass to the function.
 * @wait: If true, wait until function has completed on other CPUs.
 *
 * Returns 0 on success, else a negative status code. Note that @wait
 * will be implicitly turned on in case of allocation failures, since
 * we fall back to on-stack allocation.
 */
int smp_call_function_single(int cpu, void (*func) (void *info), void *info,
			     int wait)
{
	struct call_single_data d;
	unsigned long flags;
	/* prevent preemption and reschedule on another processor,
	   as well as CPU removal */
	int me = get_cpu();
	int err = 0;

	/* Can deadlock when called with interrupts disabled */
	WARN_ON(irqs_disabled());

	if (cpu == me) {
		local_irq_save(flags);
		func(info);
		local_irq_restore(flags);
	} else if ((unsigned)cpu < NR_CPUS && cpu_online(cpu)) {
		struct call_single_data *data = NULL;

		if (!wait) {
			data = kmalloc(sizeof(*data), GFP_ATOMIC);
			if (data)
				data->flags = CSD_FLAG_ALLOC;
		}
		if (!data) {
			data = &d;
			data->flags = CSD_FLAG_WAIT;
		}

		data->func = func;
		data->info = info;
		generic_exec_single(cpu, data);
	} else {
		err = -ENXIO;	/* CPU not online */
	}

	put_cpu();
	return err;
}
EXPORT_SYMBOL(smp_call_function_single);

/**
 * __smp_call_function_single(): Run a function on another CPU
 * @cpu: The CPU to run on.
 * @data: Pre-allocated and setup data structure
 *
 * Like smp_call_function_single(), but allow caller to pass in a pre-allocated
 * data structure. Useful for embedding @data inside other structures, for
 * instance.
 *
 */
void __smp_call_function_single(int cpu, struct call_single_data *data)
{
	/* Can deadlock when called with interrupts disabled */
	WARN_ON((data->flags & CSD_FLAG_WAIT) && irqs_disabled());

	generic_exec_single(cpu, data);
}

/* Dummy function */
static void quiesce_dummy(void *unused)
{
}

/*
 * Ensure stack based data used in call function mask is safe to free.
 *
 * This is needed by smp_call_function_mask when using on-stack data, because
 * a single call function queue is shared by all CPUs, and any CPU may pick up
 * the data item on the queue at any time before it is deleted. So we need to
 * ensure that all CPUs have transitioned through a quiescent state after
 * this call.
 *
 * This is a very slow function, implemented by sending synchronous IPIs to
 * all possible CPUs. For this reason, we have to alloc data rather than use
 * stack based data even in the case of synchronous calls. The stack based
 * data is then just used for deadlock/oom fallback which will be very rare.
 *
 * If a faster scheme can be made, we could go back to preferring stack based
 * data -- the data allocation/free is non-zero cost.
 */
static void smp_call_function_mask_quiesce_stack(cpumask_t mask)
{
	struct call_single_data data;
	int cpu;

	data.func = quiesce_dummy;
	data.info = NULL;

	for_each_cpu_mask(cpu, mask) {
		data.flags = CSD_FLAG_WAIT;
		generic_exec_single(cpu, &data);
	}
}

/**
 * smp_call_function_mask(): Run a function on a set of other CPUs.
 * @mask: The set of cpus to run on.
 * @func: The function to run. This must be fast and non-blocking.
 * @info: An arbitrary pointer to pass to the function.
 * @wait: If true, wait (atomically) until function has completed on other CPUs.
 *
 * Returns 0 on success, else a negative status code.
 *
 * If @wait is true, then returns once @func has returned. Note that @wait
 * will be implicitly turned on in case of allocation failures, since
 * we fall back to on-stack allocation.
 *
 * You must not call this function with disabled interrupts or from a
 * hardware interrupt handler or from a bottom half handler. Preemption
 * must be disabled when calling this function.
 */
int smp_call_function_mask(cpumask_t mask, void (*func)(void *), void *info,
			   int wait)
{
	struct call_function_data d;
	struct call_function_data *data = NULL;
	cpumask_t allbutself;
	unsigned long flags;
	int cpu, num_cpus;
	int slowpath = 0;

	/* Can deadlock when called with interrupts disabled */
	WARN_ON(irqs_disabled());

	cpu = smp_processor_id();
	allbutself = cpu_online_map;
	cpu_clear(cpu, allbutself);
	cpus_and(mask, mask, allbutself);
	num_cpus = cpus_weight(mask);

	/*
	 * If zero CPUs, return. If just a single CPU, turn this request
	 * into a targetted single call instead since it's faster.
	 */
	if (!num_cpus)
		return 0;
	else if (num_cpus == 1) {
		cpu = first_cpu(mask);
		return smp_call_function_single(cpu, func, info, wait);
	}

	data = kmalloc(sizeof(*data), GFP_ATOMIC);
	if (data) {
		data->csd.flags = CSD_FLAG_ALLOC;
		if (wait)
			data->csd.flags |= CSD_FLAG_WAIT;
	} else {
		data = &d;
		data->csd.flags = CSD_FLAG_WAIT;
		wait = 1;
		slowpath = 1;
	}

	spin_lock_init(&data->lock);
	data->csd.func = func;
	data->csd.info = info;
	data->refs = num_cpus;
	data->cpumask = mask;

	spin_lock_irqsave(&call_function_lock, flags);
	list_add_tail_rcu(&data->csd.list, &call_function_queue);
	spin_unlock_irqrestore(&call_function_lock, flags);

	/*
	 * Make the list addition visible before sending the ipi.
	 */
	smp_mb();

	/* Send a message to all CPUs in the map */
	arch_send_call_function_ipi(mask);

	/* optionally wait for the CPUs to complete */
	if (wait) {
		csd_flag_wait(&data->csd);
		if (unlikely(slowpath))
			smp_call_function_mask_quiesce_stack(mask);
	}

	return 0;
}
EXPORT_SYMBOL(smp_call_function_mask);

/**
 * smp_call_function(): Run a function on all other CPUs.
 * @func: The function to run. This must be fast and non-blocking.
 * @info: An arbitrary pointer to pass to the function.
 * @wait: If true, wait (atomically) until function has completed on other CPUs.
 *
 * Returns 0 on success, else a negative status code.
 *
 * If @wait is true, then returns once @func has returned; otherwise
 * it returns just before the target cpu calls @func. In case of allocation
 * failure, @wait will be implicitly turned on.
 *
 * You must not call this function with disabled interrupts or from a
 * hardware interrupt handler or from a bottom half handler.
 */
int smp_call_function(void (*func)(void *), void *info, int wait)
{
	int ret;

	preempt_disable();
	ret = smp_call_function_mask(cpu_online_map, func, info, wait);
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL(smp_call_function);

void ipi_call_lock(void)
{
	spin_lock(&call_function_lock);
}

void ipi_call_unlock(void)
{
	spin_unlock(&call_function_lock);
}

void ipi_call_lock_irq(void)
{
	spin_lock_irq(&call_function_lock);
}

void ipi_call_unlock_irq(void)
{
	spin_unlock_irq(&call_function_lock);
}
back to top