Revision f2efc6e60089c99c342a6b7da47f1037e06c4296 authored by Shirish S on 30 October 2019, 08:50:46 UTC, committed by Alex Deucher on 06 November 2019, 20:26:53 UTC
[Why]

doing kthread_park()/unpark() from drm_sched_entity_fini
while GPU reset is in progress defeats all the purpose of
drm_sched_stop->kthread_park.
If drm_sched_entity_fini->kthread_unpark() happens AFTER
drm_sched_stop->kthread_park nothing prevents from another
(third) thread to keep submitting job to HW which will be
picked up by the unparked scheduler thread and try to submit
to HW but fail because the HW ring is deactivated.

[How]
grab the reset lock before calling drm_sched_entity_fini()

Signed-off-by: Shirish S <shirish.s@amd.com>
Suggested-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Andrey Grodzovsky <andrey.grodzovsky@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
1 parent 576daab
Raw File
serpent_generic.c
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Cryptographic API.
 *
 * Serpent Cipher Algorithm.
 *
 * Copyright (C) 2002 Dag Arne Osvik <osvik@ii.uib.no>
 *               2003 Herbert Valerio Riedel <hvr@gnu.org>
 *
 * Added tnepres support:
 *		Ruben Jesus Garcia Hernandez <ruben@ugr.es>, 18.10.2004
 *              Based on code by hvr
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <asm/byteorder.h>
#include <linux/crypto.h>
#include <linux/types.h>
#include <crypto/serpent.h>

/* Key is padded to the maximum of 256 bits before round key generation.
 * Any key length <= 256 bits (32 bytes) is allowed by the algorithm.
 */

#define PHI 0x9e3779b9UL

#define keyiter(a, b, c, d, i, j) \
	({ b ^= d; b ^= c; b ^= a; b ^= PHI ^ i; b = rol32(b, 11); k[j] = b; })

#define loadkeys(x0, x1, x2, x3, i) \
	({ x0 = k[i]; x1 = k[i+1]; x2 = k[i+2]; x3 = k[i+3]; })

#define storekeys(x0, x1, x2, x3, i) \
	({ k[i] = x0; k[i+1] = x1; k[i+2] = x2; k[i+3] = x3; })

#define store_and_load_keys(x0, x1, x2, x3, s, l) \
	({ storekeys(x0, x1, x2, x3, s); loadkeys(x0, x1, x2, x3, l); })

#define K(x0, x1, x2, x3, i) ({				\
	x3 ^= k[4*(i)+3];        x2 ^= k[4*(i)+2];	\
	x1 ^= k[4*(i)+1];        x0 ^= k[4*(i)+0];	\
	})

#define LK(x0, x1, x2, x3, x4, i) ({					   \
							x0 = rol32(x0, 13);\
	x2 = rol32(x2, 3);	x1 ^= x0;		x4  = x0 << 3;	   \
	x3 ^= x2;		x1 ^= x2;				   \
	x1 = rol32(x1, 1);	x3 ^= x4;				   \
	x3 = rol32(x3, 7);	x4  = x1;				   \
	x0 ^= x1;		x4 <<= 7;		x2 ^= x3;	   \
	x0 ^= x3;		x2 ^= x4;		x3 ^= k[4*i+3];	   \
	x1 ^= k[4*i+1];		x0 = rol32(x0, 5);	x2 = rol32(x2, 22);\
	x0 ^= k[4*i+0];		x2 ^= k[4*i+2];				   \
	})

#define KL(x0, x1, x2, x3, x4, i) ({					   \
	x0 ^= k[4*i+0];		x1 ^= k[4*i+1];		x2 ^= k[4*i+2];	   \
	x3 ^= k[4*i+3];		x0 = ror32(x0, 5);	x2 = ror32(x2, 22);\
	x4 =  x1;		x2 ^= x3;		x0 ^= x3;	   \
	x4 <<= 7;		x0 ^= x1;		x1 = ror32(x1, 1); \
	x2 ^= x4;		x3 = ror32(x3, 7);	x4 = x0 << 3;	   \
	x1 ^= x0;		x3 ^= x4;		x0 = ror32(x0, 13);\
	x1 ^= x2;		x3 ^= x2;		x2 = ror32(x2, 3); \
	})

#define S0(x0, x1, x2, x3, x4) ({			\
					x4  = x3;	\
	x3 |= x0;	x0 ^= x4;	x4 ^= x2;	\
	x4 = ~x4;	x3 ^= x1;	x1 &= x0;	\
	x1 ^= x4;	x2 ^= x0;	x0 ^= x3;	\
	x4 |= x0;	x0 ^= x2;	x2 &= x1;	\
	x3 ^= x2;	x1 = ~x1;	x2 ^= x4;	\
	x1 ^= x2;					\
	})

#define S1(x0, x1, x2, x3, x4) ({			\
					x4  = x1;	\
	x1 ^= x0;	x0 ^= x3;	x3 = ~x3;	\
	x4 &= x1;	x0 |= x1;	x3 ^= x2;	\
	x0 ^= x3;	x1 ^= x3;	x3 ^= x4;	\
	x1 |= x4;	x4 ^= x2;	x2 &= x0;	\
	x2 ^= x1;	x1 |= x0;	x0 = ~x0;	\
	x0 ^= x2;	x4 ^= x1;			\
	})

#define S2(x0, x1, x2, x3, x4) ({			\
					x3 = ~x3;	\
	x1 ^= x0;	x4  = x0;	x0 &= x2;	\
	x0 ^= x3;	x3 |= x4;	x2 ^= x1;	\
	x3 ^= x1;	x1 &= x0;	x0 ^= x2;	\
	x2 &= x3;	x3 |= x1;	x0 = ~x0;	\
	x3 ^= x0;	x4 ^= x0;	x0 ^= x2;	\
	x1 |= x2;					\
	})

#define S3(x0, x1, x2, x3, x4) ({			\
					x4  = x1;	\
	x1 ^= x3;	x3 |= x0;	x4 &= x0;	\
	x0 ^= x2;	x2 ^= x1;	x1 &= x3;	\
	x2 ^= x3;	x0 |= x4;	x4 ^= x3;	\
	x1 ^= x0;	x0 &= x3;	x3 &= x4;	\
	x3 ^= x2;	x4 |= x1;	x2 &= x1;	\
	x4 ^= x3;	x0 ^= x3;	x3 ^= x2;	\
	})

#define S4(x0, x1, x2, x3, x4) ({			\
					x4  = x3;	\
	x3 &= x0;	x0 ^= x4;			\
	x3 ^= x2;	x2 |= x4;	x0 ^= x1;	\
	x4 ^= x3;	x2 |= x0;			\
	x2 ^= x1;	x1 &= x0;			\
	x1 ^= x4;	x4 &= x2;	x2 ^= x3;	\
	x4 ^= x0;	x3 |= x1;	x1 = ~x1;	\
	x3 ^= x0;					\
	})

#define S5(x0, x1, x2, x3, x4) ({			\
	x4  = x1;	x1 |= x0;			\
	x2 ^= x1;	x3 = ~x3;	x4 ^= x0;	\
	x0 ^= x2;	x1 &= x4;	x4 |= x3;	\
	x4 ^= x0;	x0 &= x3;	x1 ^= x3;	\
	x3 ^= x2;	x0 ^= x1;	x2 &= x4;	\
	x1 ^= x2;	x2 &= x0;			\
	x3 ^= x2;					\
	})

#define S6(x0, x1, x2, x3, x4) ({			\
					x4  = x1;	\
	x3 ^= x0;	x1 ^= x2;	x2 ^= x0;	\
	x0 &= x3;	x1 |= x3;	x4 = ~x4;	\
	x0 ^= x1;	x1 ^= x2;			\
	x3 ^= x4;	x4 ^= x0;	x2 &= x0;	\
	x4 ^= x1;	x2 ^= x3;	x3 &= x1;	\
	x3 ^= x0;	x1 ^= x2;			\
	})

#define S7(x0, x1, x2, x3, x4) ({			\
					x1 = ~x1;	\
	x4  = x1;	x0 = ~x0;	x1 &= x2;	\
	x1 ^= x3;	x3 |= x4;	x4 ^= x2;	\
	x2 ^= x3;	x3 ^= x0;	x0 |= x1;	\
	x2 &= x0;	x0 ^= x4;	x4 ^= x3;	\
	x3 &= x0;	x4 ^= x1;			\
	x2 ^= x4;	x3 ^= x1;	x4 |= x0;	\
	x4 ^= x1;					\
	})

#define SI0(x0, x1, x2, x3, x4) ({			\
			x4  = x3;	x1 ^= x0;	\
	x3 |= x1;	x4 ^= x1;	x0 = ~x0;	\
	x2 ^= x3;	x3 ^= x0;	x0 &= x1;	\
	x0 ^= x2;	x2 &= x3;	x3 ^= x4;	\
	x2 ^= x3;	x1 ^= x3;	x3 &= x0;	\
	x1 ^= x0;	x0 ^= x2;	x4 ^= x3;	\
	})

#define SI1(x0, x1, x2, x3, x4) ({			\
	x1 ^= x3;	x4  = x0;			\
	x0 ^= x2;	x2 = ~x2;	x4 |= x1;	\
	x4 ^= x3;	x3 &= x1;	x1 ^= x2;	\
	x2 &= x4;	x4 ^= x1;	x1 |= x3;	\
	x3 ^= x0;	x2 ^= x0;	x0 |= x4;	\
	x2 ^= x4;	x1 ^= x0;			\
	x4 ^= x1;					\
	})

#define SI2(x0, x1, x2, x3, x4) ({			\
	x2 ^= x1;	x4  = x3;	x3 = ~x3;	\
	x3 |= x2;	x2 ^= x4;	x4 ^= x0;	\
	x3 ^= x1;	x1 |= x2;	x2 ^= x0;	\
	x1 ^= x4;	x4 |= x3;	x2 ^= x3;	\
	x4 ^= x2;	x2 &= x1;			\
	x2 ^= x3;	x3 ^= x4;	x4 ^= x0;	\
	})

#define SI3(x0, x1, x2, x3, x4) ({			\
					x2 ^= x1;	\
	x4  = x1;	x1 &= x2;			\
	x1 ^= x0;	x0 |= x4;	x4 ^= x3;	\
	x0 ^= x3;	x3 |= x1;	x1 ^= x2;	\
	x1 ^= x3;	x0 ^= x2;	x2 ^= x3;	\
	x3 &= x1;	x1 ^= x0;	x0 &= x2;	\
	x4 ^= x3;	x3 ^= x0;	x0 ^= x1;	\
	})

#define SI4(x0, x1, x2, x3, x4) ({			\
	x2 ^= x3;	x4  = x0;	x0 &= x1;	\
	x0 ^= x2;	x2 |= x3;	x4 = ~x4;	\
	x1 ^= x0;	x0 ^= x2;	x2 &= x4;	\
	x2 ^= x0;	x0 |= x4;			\
	x0 ^= x3;	x3 &= x2;			\
	x4 ^= x3;	x3 ^= x1;	x1 &= x0;	\
	x4 ^= x1;	x0 ^= x3;			\
	})

#define SI5(x0, x1, x2, x3, x4) ({			\
			x4  = x1;	x1 |= x2;	\
	x2 ^= x4;	x1 ^= x3;	x3 &= x4;	\
	x2 ^= x3;	x3 |= x0;	x0 = ~x0;	\
	x3 ^= x2;	x2 |= x0;	x4 ^= x1;	\
	x2 ^= x4;	x4 &= x0;	x0 ^= x1;	\
	x1 ^= x3;	x0 &= x2;	x2 ^= x3;	\
	x0 ^= x2;	x2 ^= x4;	x4 ^= x3;	\
	})

#define SI6(x0, x1, x2, x3, x4) ({			\
			x0 ^= x2;			\
	x4  = x0;	x0 &= x3;	x2 ^= x3;	\
	x0 ^= x2;	x3 ^= x1;	x2 |= x4;	\
	x2 ^= x3;	x3 &= x0;	x0 = ~x0;	\
	x3 ^= x1;	x1 &= x2;	x4 ^= x0;	\
	x3 ^= x4;	x4 ^= x2;	x0 ^= x1;	\
	x2 ^= x0;					\
	})

#define SI7(x0, x1, x2, x3, x4) ({			\
	x4  = x3;	x3 &= x0;	x0 ^= x2;	\
	x2 |= x4;	x4 ^= x1;	x0 = ~x0;	\
	x1 |= x3;	x4 ^= x0;	x0 &= x2;	\
	x0 ^= x1;	x1 &= x2;	x3 ^= x2;	\
	x4 ^= x3;	x2 &= x3;	x3 |= x0;	\
	x1 ^= x4;	x3 ^= x4;	x4 &= x0;	\
	x4 ^= x2;					\
	})

/*
 * both gcc and clang have misoptimized this function in the past,
 * producing horrible object code from spilling temporary variables
 * on the stack. Forcing this part out of line avoids that.
 */
static noinline void __serpent_setkey_sbox(u32 r0, u32 r1, u32 r2,
					   u32 r3, u32 r4, u32 *k)
{
	k += 100;
	S3(r3, r4, r0, r1, r2); store_and_load_keys(r1, r2, r4, r3, 28, 24);
	S4(r1, r2, r4, r3, r0); store_and_load_keys(r2, r4, r3, r0, 24, 20);
	S5(r2, r4, r3, r0, r1); store_and_load_keys(r1, r2, r4, r0, 20, 16);
	S6(r1, r2, r4, r0, r3); store_and_load_keys(r4, r3, r2, r0, 16, 12);
	S7(r4, r3, r2, r0, r1); store_and_load_keys(r1, r2, r0, r4, 12, 8);
	S0(r1, r2, r0, r4, r3); store_and_load_keys(r0, r2, r4, r1, 8, 4);
	S1(r0, r2, r4, r1, r3); store_and_load_keys(r3, r4, r1, r0, 4, 0);
	S2(r3, r4, r1, r0, r2); store_and_load_keys(r2, r4, r3, r0, 0, -4);
	S3(r2, r4, r3, r0, r1); store_and_load_keys(r0, r1, r4, r2, -4, -8);
	S4(r0, r1, r4, r2, r3); store_and_load_keys(r1, r4, r2, r3, -8, -12);
	S5(r1, r4, r2, r3, r0); store_and_load_keys(r0, r1, r4, r3, -12, -16);
	S6(r0, r1, r4, r3, r2); store_and_load_keys(r4, r2, r1, r3, -16, -20);
	S7(r4, r2, r1, r3, r0); store_and_load_keys(r0, r1, r3, r4, -20, -24);
	S0(r0, r1, r3, r4, r2); store_and_load_keys(r3, r1, r4, r0, -24, -28);
	k -= 50;
	S1(r3, r1, r4, r0, r2); store_and_load_keys(r2, r4, r0, r3, 22, 18);
	S2(r2, r4, r0, r3, r1); store_and_load_keys(r1, r4, r2, r3, 18, 14);
	S3(r1, r4, r2, r3, r0); store_and_load_keys(r3, r0, r4, r1, 14, 10);
	S4(r3, r0, r4, r1, r2); store_and_load_keys(r0, r4, r1, r2, 10, 6);
	S5(r0, r4, r1, r2, r3); store_and_load_keys(r3, r0, r4, r2, 6, 2);
	S6(r3, r0, r4, r2, r1); store_and_load_keys(r4, r1, r0, r2, 2, -2);
	S7(r4, r1, r0, r2, r3); store_and_load_keys(r3, r0, r2, r4, -2, -6);
	S0(r3, r0, r2, r4, r1); store_and_load_keys(r2, r0, r4, r3, -6, -10);
	S1(r2, r0, r4, r3, r1); store_and_load_keys(r1, r4, r3, r2, -10, -14);
	S2(r1, r4, r3, r2, r0); store_and_load_keys(r0, r4, r1, r2, -14, -18);
	S3(r0, r4, r1, r2, r3); store_and_load_keys(r2, r3, r4, r0, -18, -22);
	k -= 50;
	S4(r2, r3, r4, r0, r1); store_and_load_keys(r3, r4, r0, r1, 28, 24);
	S5(r3, r4, r0, r1, r2); store_and_load_keys(r2, r3, r4, r1, 24, 20);
	S6(r2, r3, r4, r1, r0); store_and_load_keys(r4, r0, r3, r1, 20, 16);
	S7(r4, r0, r3, r1, r2); store_and_load_keys(r2, r3, r1, r4, 16, 12);
	S0(r2, r3, r1, r4, r0); store_and_load_keys(r1, r3, r4, r2, 12, 8);
	S1(r1, r3, r4, r2, r0); store_and_load_keys(r0, r4, r2, r1, 8, 4);
	S2(r0, r4, r2, r1, r3); store_and_load_keys(r3, r4, r0, r1, 4, 0);
	S3(r3, r4, r0, r1, r2); storekeys(r1, r2, r4, r3, 0);
}

int __serpent_setkey(struct serpent_ctx *ctx, const u8 *key,
		     unsigned int keylen)
{
	u32 *k = ctx->expkey;
	u8  *k8 = (u8 *)k;
	u32 r0, r1, r2, r3, r4;
	int i;

	/* Copy key, add padding */

	for (i = 0; i < keylen; ++i)
		k8[i] = key[i];
	if (i < SERPENT_MAX_KEY_SIZE)
		k8[i++] = 1;
	while (i < SERPENT_MAX_KEY_SIZE)
		k8[i++] = 0;

	/* Expand key using polynomial */

	r0 = le32_to_cpu(k[3]);
	r1 = le32_to_cpu(k[4]);
	r2 = le32_to_cpu(k[5]);
	r3 = le32_to_cpu(k[6]);
	r4 = le32_to_cpu(k[7]);

	keyiter(le32_to_cpu(k[0]), r0, r4, r2, 0, 0);
	keyiter(le32_to_cpu(k[1]), r1, r0, r3, 1, 1);
	keyiter(le32_to_cpu(k[2]), r2, r1, r4, 2, 2);
	keyiter(le32_to_cpu(k[3]), r3, r2, r0, 3, 3);
	keyiter(le32_to_cpu(k[4]), r4, r3, r1, 4, 4);
	keyiter(le32_to_cpu(k[5]), r0, r4, r2, 5, 5);
	keyiter(le32_to_cpu(k[6]), r1, r0, r3, 6, 6);
	keyiter(le32_to_cpu(k[7]), r2, r1, r4, 7, 7);

	keyiter(k[0], r3, r2, r0, 8, 8);
	keyiter(k[1], r4, r3, r1, 9, 9);
	keyiter(k[2], r0, r4, r2, 10, 10);
	keyiter(k[3], r1, r0, r3, 11, 11);
	keyiter(k[4], r2, r1, r4, 12, 12);
	keyiter(k[5], r3, r2, r0, 13, 13);
	keyiter(k[6], r4, r3, r1, 14, 14);
	keyiter(k[7], r0, r4, r2, 15, 15);
	keyiter(k[8], r1, r0, r3, 16, 16);
	keyiter(k[9], r2, r1, r4, 17, 17);
	keyiter(k[10], r3, r2, r0, 18, 18);
	keyiter(k[11], r4, r3, r1, 19, 19);
	keyiter(k[12], r0, r4, r2, 20, 20);
	keyiter(k[13], r1, r0, r3, 21, 21);
	keyiter(k[14], r2, r1, r4, 22, 22);
	keyiter(k[15], r3, r2, r0, 23, 23);
	keyiter(k[16], r4, r3, r1, 24, 24);
	keyiter(k[17], r0, r4, r2, 25, 25);
	keyiter(k[18], r1, r0, r3, 26, 26);
	keyiter(k[19], r2, r1, r4, 27, 27);
	keyiter(k[20], r3, r2, r0, 28, 28);
	keyiter(k[21], r4, r3, r1, 29, 29);
	keyiter(k[22], r0, r4, r2, 30, 30);
	keyiter(k[23], r1, r0, r3, 31, 31);

	k += 50;

	keyiter(k[-26], r2, r1, r4, 32, -18);
	keyiter(k[-25], r3, r2, r0, 33, -17);
	keyiter(k[-24], r4, r3, r1, 34, -16);
	keyiter(k[-23], r0, r4, r2, 35, -15);
	keyiter(k[-22], r1, r0, r3, 36, -14);
	keyiter(k[-21], r2, r1, r4, 37, -13);
	keyiter(k[-20], r3, r2, r0, 38, -12);
	keyiter(k[-19], r4, r3, r1, 39, -11);
	keyiter(k[-18], r0, r4, r2, 40, -10);
	keyiter(k[-17], r1, r0, r3, 41, -9);
	keyiter(k[-16], r2, r1, r4, 42, -8);
	keyiter(k[-15], r3, r2, r0, 43, -7);
	keyiter(k[-14], r4, r3, r1, 44, -6);
	keyiter(k[-13], r0, r4, r2, 45, -5);
	keyiter(k[-12], r1, r0, r3, 46, -4);
	keyiter(k[-11], r2, r1, r4, 47, -3);
	keyiter(k[-10], r3, r2, r0, 48, -2);
	keyiter(k[-9], r4, r3, r1, 49, -1);
	keyiter(k[-8], r0, r4, r2, 50, 0);
	keyiter(k[-7], r1, r0, r3, 51, 1);
	keyiter(k[-6], r2, r1, r4, 52, 2);
	keyiter(k[-5], r3, r2, r0, 53, 3);
	keyiter(k[-4], r4, r3, r1, 54, 4);
	keyiter(k[-3], r0, r4, r2, 55, 5);
	keyiter(k[-2], r1, r0, r3, 56, 6);
	keyiter(k[-1], r2, r1, r4, 57, 7);
	keyiter(k[0], r3, r2, r0, 58, 8);
	keyiter(k[1], r4, r3, r1, 59, 9);
	keyiter(k[2], r0, r4, r2, 60, 10);
	keyiter(k[3], r1, r0, r3, 61, 11);
	keyiter(k[4], r2, r1, r4, 62, 12);
	keyiter(k[5], r3, r2, r0, 63, 13);
	keyiter(k[6], r4, r3, r1, 64, 14);
	keyiter(k[7], r0, r4, r2, 65, 15);
	keyiter(k[8], r1, r0, r3, 66, 16);
	keyiter(k[9], r2, r1, r4, 67, 17);
	keyiter(k[10], r3, r2, r0, 68, 18);
	keyiter(k[11], r4, r3, r1, 69, 19);
	keyiter(k[12], r0, r4, r2, 70, 20);
	keyiter(k[13], r1, r0, r3, 71, 21);
	keyiter(k[14], r2, r1, r4, 72, 22);
	keyiter(k[15], r3, r2, r0, 73, 23);
	keyiter(k[16], r4, r3, r1, 74, 24);
	keyiter(k[17], r0, r4, r2, 75, 25);
	keyiter(k[18], r1, r0, r3, 76, 26);
	keyiter(k[19], r2, r1, r4, 77, 27);
	keyiter(k[20], r3, r2, r0, 78, 28);
	keyiter(k[21], r4, r3, r1, 79, 29);
	keyiter(k[22], r0, r4, r2, 80, 30);
	keyiter(k[23], r1, r0, r3, 81, 31);

	k += 50;

	keyiter(k[-26], r2, r1, r4, 82, -18);
	keyiter(k[-25], r3, r2, r0, 83, -17);
	keyiter(k[-24], r4, r3, r1, 84, -16);
	keyiter(k[-23], r0, r4, r2, 85, -15);
	keyiter(k[-22], r1, r0, r3, 86, -14);
	keyiter(k[-21], r2, r1, r4, 87, -13);
	keyiter(k[-20], r3, r2, r0, 88, -12);
	keyiter(k[-19], r4, r3, r1, 89, -11);
	keyiter(k[-18], r0, r4, r2, 90, -10);
	keyiter(k[-17], r1, r0, r3, 91, -9);
	keyiter(k[-16], r2, r1, r4, 92, -8);
	keyiter(k[-15], r3, r2, r0, 93, -7);
	keyiter(k[-14], r4, r3, r1, 94, -6);
	keyiter(k[-13], r0, r4, r2, 95, -5);
	keyiter(k[-12], r1, r0, r3, 96, -4);
	keyiter(k[-11], r2, r1, r4, 97, -3);
	keyiter(k[-10], r3, r2, r0, 98, -2);
	keyiter(k[-9], r4, r3, r1, 99, -1);
	keyiter(k[-8], r0, r4, r2, 100, 0);
	keyiter(k[-7], r1, r0, r3, 101, 1);
	keyiter(k[-6], r2, r1, r4, 102, 2);
	keyiter(k[-5], r3, r2, r0, 103, 3);
	keyiter(k[-4], r4, r3, r1, 104, 4);
	keyiter(k[-3], r0, r4, r2, 105, 5);
	keyiter(k[-2], r1, r0, r3, 106, 6);
	keyiter(k[-1], r2, r1, r4, 107, 7);
	keyiter(k[0], r3, r2, r0, 108, 8);
	keyiter(k[1], r4, r3, r1, 109, 9);
	keyiter(k[2], r0, r4, r2, 110, 10);
	keyiter(k[3], r1, r0, r3, 111, 11);
	keyiter(k[4], r2, r1, r4, 112, 12);
	keyiter(k[5], r3, r2, r0, 113, 13);
	keyiter(k[6], r4, r3, r1, 114, 14);
	keyiter(k[7], r0, r4, r2, 115, 15);
	keyiter(k[8], r1, r0, r3, 116, 16);
	keyiter(k[9], r2, r1, r4, 117, 17);
	keyiter(k[10], r3, r2, r0, 118, 18);
	keyiter(k[11], r4, r3, r1, 119, 19);
	keyiter(k[12], r0, r4, r2, 120, 20);
	keyiter(k[13], r1, r0, r3, 121, 21);
	keyiter(k[14], r2, r1, r4, 122, 22);
	keyiter(k[15], r3, r2, r0, 123, 23);
	keyiter(k[16], r4, r3, r1, 124, 24);
	keyiter(k[17], r0, r4, r2, 125, 25);
	keyiter(k[18], r1, r0, r3, 126, 26);
	keyiter(k[19], r2, r1, r4, 127, 27);
	keyiter(k[20], r3, r2, r0, 128, 28);
	keyiter(k[21], r4, r3, r1, 129, 29);
	keyiter(k[22], r0, r4, r2, 130, 30);
	keyiter(k[23], r1, r0, r3, 131, 31);

	/* Apply S-boxes */
	__serpent_setkey_sbox(r0, r1, r2, r3, r4, ctx->expkey);

	return 0;
}
EXPORT_SYMBOL_GPL(__serpent_setkey);

int serpent_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen)
{
	return __serpent_setkey(crypto_tfm_ctx(tfm), key, keylen);
}
EXPORT_SYMBOL_GPL(serpent_setkey);

void __serpent_encrypt(struct serpent_ctx *ctx, u8 *dst, const u8 *src)
{
	const u32 *k = ctx->expkey;
	const __le32 *s = (const __le32 *)src;
	__le32	*d = (__le32 *)dst;
	u32	r0, r1, r2, r3, r4;

/*
 * Note: The conversions between u8* and u32* might cause trouble
 * on architectures with stricter alignment rules than x86
 */

	r0 = le32_to_cpu(s[0]);
	r1 = le32_to_cpu(s[1]);
	r2 = le32_to_cpu(s[2]);
	r3 = le32_to_cpu(s[3]);

					K(r0, r1, r2, r3, 0);
	S0(r0, r1, r2, r3, r4);		LK(r2, r1, r3, r0, r4, 1);
	S1(r2, r1, r3, r0, r4);		LK(r4, r3, r0, r2, r1, 2);
	S2(r4, r3, r0, r2, r1);		LK(r1, r3, r4, r2, r0, 3);
	S3(r1, r3, r4, r2, r0);		LK(r2, r0, r3, r1, r4, 4);
	S4(r2, r0, r3, r1, r4);		LK(r0, r3, r1, r4, r2, 5);
	S5(r0, r3, r1, r4, r2);		LK(r2, r0, r3, r4, r1, 6);
	S6(r2, r0, r3, r4, r1);		LK(r3, r1, r0, r4, r2, 7);
	S7(r3, r1, r0, r4, r2);		LK(r2, r0, r4, r3, r1, 8);
	S0(r2, r0, r4, r3, r1);		LK(r4, r0, r3, r2, r1, 9);
	S1(r4, r0, r3, r2, r1);		LK(r1, r3, r2, r4, r0, 10);
	S2(r1, r3, r2, r4, r0);		LK(r0, r3, r1, r4, r2, 11);
	S3(r0, r3, r1, r4, r2);		LK(r4, r2, r3, r0, r1, 12);
	S4(r4, r2, r3, r0, r1);		LK(r2, r3, r0, r1, r4, 13);
	S5(r2, r3, r0, r1, r4);		LK(r4, r2, r3, r1, r0, 14);
	S6(r4, r2, r3, r1, r0);		LK(r3, r0, r2, r1, r4, 15);
	S7(r3, r0, r2, r1, r4);		LK(r4, r2, r1, r3, r0, 16);
	S0(r4, r2, r1, r3, r0);		LK(r1, r2, r3, r4, r0, 17);
	S1(r1, r2, r3, r4, r0);		LK(r0, r3, r4, r1, r2, 18);
	S2(r0, r3, r4, r1, r2);		LK(r2, r3, r0, r1, r4, 19);
	S3(r2, r3, r0, r1, r4);		LK(r1, r4, r3, r2, r0, 20);
	S4(r1, r4, r3, r2, r0);		LK(r4, r3, r2, r0, r1, 21);
	S5(r4, r3, r2, r0, r1);		LK(r1, r4, r3, r0, r2, 22);
	S6(r1, r4, r3, r0, r2);		LK(r3, r2, r4, r0, r1, 23);
	S7(r3, r2, r4, r0, r1);		LK(r1, r4, r0, r3, r2, 24);
	S0(r1, r4, r0, r3, r2);		LK(r0, r4, r3, r1, r2, 25);
	S1(r0, r4, r3, r1, r2);		LK(r2, r3, r1, r0, r4, 26);
	S2(r2, r3, r1, r0, r4);		LK(r4, r3, r2, r0, r1, 27);
	S3(r4, r3, r2, r0, r1);		LK(r0, r1, r3, r4, r2, 28);
	S4(r0, r1, r3, r4, r2);		LK(r1, r3, r4, r2, r0, 29);
	S5(r1, r3, r4, r2, r0);		LK(r0, r1, r3, r2, r4, 30);
	S6(r0, r1, r3, r2, r4);		LK(r3, r4, r1, r2, r0, 31);
	S7(r3, r4, r1, r2, r0);		K(r0, r1, r2, r3, 32);

	d[0] = cpu_to_le32(r0);
	d[1] = cpu_to_le32(r1);
	d[2] = cpu_to_le32(r2);
	d[3] = cpu_to_le32(r3);
}
EXPORT_SYMBOL_GPL(__serpent_encrypt);

static void serpent_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
	struct serpent_ctx *ctx = crypto_tfm_ctx(tfm);

	__serpent_encrypt(ctx, dst, src);
}

void __serpent_decrypt(struct serpent_ctx *ctx, u8 *dst, const u8 *src)
{
	const u32 *k = ctx->expkey;
	const __le32 *s = (const __le32 *)src;
	__le32	*d = (__le32 *)dst;
	u32	r0, r1, r2, r3, r4;

	r0 = le32_to_cpu(s[0]);
	r1 = le32_to_cpu(s[1]);
	r2 = le32_to_cpu(s[2]);
	r3 = le32_to_cpu(s[3]);

					K(r0, r1, r2, r3, 32);
	SI7(r0, r1, r2, r3, r4);	KL(r1, r3, r0, r4, r2, 31);
	SI6(r1, r3, r0, r4, r2);	KL(r0, r2, r4, r1, r3, 30);
	SI5(r0, r2, r4, r1, r3);	KL(r2, r3, r0, r4, r1, 29);
	SI4(r2, r3, r0, r4, r1);	KL(r2, r0, r1, r4, r3, 28);
	SI3(r2, r0, r1, r4, r3);	KL(r1, r2, r3, r4, r0, 27);
	SI2(r1, r2, r3, r4, r0);	KL(r2, r0, r4, r3, r1, 26);
	SI1(r2, r0, r4, r3, r1);	KL(r1, r0, r4, r3, r2, 25);
	SI0(r1, r0, r4, r3, r2);	KL(r4, r2, r0, r1, r3, 24);
	SI7(r4, r2, r0, r1, r3);	KL(r2, r1, r4, r3, r0, 23);
	SI6(r2, r1, r4, r3, r0);	KL(r4, r0, r3, r2, r1, 22);
	SI5(r4, r0, r3, r2, r1);	KL(r0, r1, r4, r3, r2, 21);
	SI4(r0, r1, r4, r3, r2);	KL(r0, r4, r2, r3, r1, 20);
	SI3(r0, r4, r2, r3, r1);	KL(r2, r0, r1, r3, r4, 19);
	SI2(r2, r0, r1, r3, r4);	KL(r0, r4, r3, r1, r2, 18);
	SI1(r0, r4, r3, r1, r2);	KL(r2, r4, r3, r1, r0, 17);
	SI0(r2, r4, r3, r1, r0);	KL(r3, r0, r4, r2, r1, 16);
	SI7(r3, r0, r4, r2, r1);	KL(r0, r2, r3, r1, r4, 15);
	SI6(r0, r2, r3, r1, r4);	KL(r3, r4, r1, r0, r2, 14);
	SI5(r3, r4, r1, r0, r2);	KL(r4, r2, r3, r1, r0, 13);
	SI4(r4, r2, r3, r1, r0);	KL(r4, r3, r0, r1, r2, 12);
	SI3(r4, r3, r0, r1, r2);	KL(r0, r4, r2, r1, r3, 11);
	SI2(r0, r4, r2, r1, r3);	KL(r4, r3, r1, r2, r0, 10);
	SI1(r4, r3, r1, r2, r0);	KL(r0, r3, r1, r2, r4, 9);
	SI0(r0, r3, r1, r2, r4);	KL(r1, r4, r3, r0, r2, 8);
	SI7(r1, r4, r3, r0, r2);	KL(r4, r0, r1, r2, r3, 7);
	SI6(r4, r0, r1, r2, r3);	KL(r1, r3, r2, r4, r0, 6);
	SI5(r1, r3, r2, r4, r0);	KL(r3, r0, r1, r2, r4, 5);
	SI4(r3, r0, r1, r2, r4);	KL(r3, r1, r4, r2, r0, 4);
	SI3(r3, r1, r4, r2, r0);	KL(r4, r3, r0, r2, r1, 3);
	SI2(r4, r3, r0, r2, r1);	KL(r3, r1, r2, r0, r4, 2);
	SI1(r3, r1, r2, r0, r4);	KL(r4, r1, r2, r0, r3, 1);
	SI0(r4, r1, r2, r0, r3);	K(r2, r3, r1, r4, 0);

	d[0] = cpu_to_le32(r2);
	d[1] = cpu_to_le32(r3);
	d[2] = cpu_to_le32(r1);
	d[3] = cpu_to_le32(r4);
}
EXPORT_SYMBOL_GPL(__serpent_decrypt);

static void serpent_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
	struct serpent_ctx *ctx = crypto_tfm_ctx(tfm);

	__serpent_decrypt(ctx, dst, src);
}

static int tnepres_setkey(struct crypto_tfm *tfm, const u8 *key,
			  unsigned int keylen)
{
	u8 rev_key[SERPENT_MAX_KEY_SIZE];
	int i;

	for (i = 0; i < keylen; ++i)
		rev_key[keylen - i - 1] = key[i];

	return serpent_setkey(tfm, rev_key, keylen);
}

static void tnepres_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
	const u32 * const s = (const u32 * const)src;
	u32 * const d = (u32 * const)dst;

	u32 rs[4], rd[4];

	rs[0] = swab32(s[3]);
	rs[1] = swab32(s[2]);
	rs[2] = swab32(s[1]);
	rs[3] = swab32(s[0]);

	serpent_encrypt(tfm, (u8 *)rd, (u8 *)rs);

	d[0] = swab32(rd[3]);
	d[1] = swab32(rd[2]);
	d[2] = swab32(rd[1]);
	d[3] = swab32(rd[0]);
}

static void tnepres_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
	const u32 * const s = (const u32 * const)src;
	u32 * const d = (u32 * const)dst;

	u32 rs[4], rd[4];

	rs[0] = swab32(s[3]);
	rs[1] = swab32(s[2]);
	rs[2] = swab32(s[1]);
	rs[3] = swab32(s[0]);

	serpent_decrypt(tfm, (u8 *)rd, (u8 *)rs);

	d[0] = swab32(rd[3]);
	d[1] = swab32(rd[2]);
	d[2] = swab32(rd[1]);
	d[3] = swab32(rd[0]);
}

static struct crypto_alg srp_algs[2] = { {
	.cra_name		=	"serpent",
	.cra_driver_name	=	"serpent-generic",
	.cra_priority		=	100,
	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
	.cra_blocksize		=	SERPENT_BLOCK_SIZE,
	.cra_ctxsize		=	sizeof(struct serpent_ctx),
	.cra_alignmask		=	3,
	.cra_module		=	THIS_MODULE,
	.cra_u			=	{ .cipher = {
	.cia_min_keysize	=	SERPENT_MIN_KEY_SIZE,
	.cia_max_keysize	=	SERPENT_MAX_KEY_SIZE,
	.cia_setkey		=	serpent_setkey,
	.cia_encrypt		=	serpent_encrypt,
	.cia_decrypt		=	serpent_decrypt } }
}, {
	.cra_name		=	"tnepres",
	.cra_driver_name	=	"tnepres-generic",
	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
	.cra_blocksize		=	SERPENT_BLOCK_SIZE,
	.cra_ctxsize		=	sizeof(struct serpent_ctx),
	.cra_alignmask		=	3,
	.cra_module		=	THIS_MODULE,
	.cra_u			=	{ .cipher = {
	.cia_min_keysize	=	SERPENT_MIN_KEY_SIZE,
	.cia_max_keysize	=	SERPENT_MAX_KEY_SIZE,
	.cia_setkey		=	tnepres_setkey,
	.cia_encrypt		=	tnepres_encrypt,
	.cia_decrypt		=	tnepres_decrypt } }
} };

static int __init serpent_mod_init(void)
{
	return crypto_register_algs(srp_algs, ARRAY_SIZE(srp_algs));
}

static void __exit serpent_mod_fini(void)
{
	crypto_unregister_algs(srp_algs, ARRAY_SIZE(srp_algs));
}

subsys_initcall(serpent_mod_init);
module_exit(serpent_mod_fini);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Serpent and tnepres (kerneli compatible serpent reversed) Cipher Algorithm");
MODULE_AUTHOR("Dag Arne Osvik <osvik@ii.uib.no>");
MODULE_ALIAS_CRYPTO("tnepres");
MODULE_ALIAS_CRYPTO("serpent");
MODULE_ALIAS_CRYPTO("serpent-generic");
back to top