Revision f2efc6e60089c99c342a6b7da47f1037e06c4296 authored by Shirish S on 30 October 2019, 08:50:46 UTC, committed by Alex Deucher on 06 November 2019, 20:26:53 UTC
[Why]

doing kthread_park()/unpark() from drm_sched_entity_fini
while GPU reset is in progress defeats all the purpose of
drm_sched_stop->kthread_park.
If drm_sched_entity_fini->kthread_unpark() happens AFTER
drm_sched_stop->kthread_park nothing prevents from another
(third) thread to keep submitting job to HW which will be
picked up by the unparked scheduler thread and try to submit
to HW but fail because the HW ring is deactivated.

[How]
grab the reset lock before calling drm_sched_entity_fini()

Signed-off-by: Shirish S <shirish.s@amd.com>
Suggested-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Andrey Grodzovsky <andrey.grodzovsky@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
1 parent 576daab
Raw File
harmony.c
// SPDX-License-Identifier: GPL-2.0-only
/* Hewlett-Packard Harmony audio driver
 *
 *   This is a driver for the Harmony audio chipset found
 *   on the LASI ASIC of various early HP PA-RISC workstations.
 *
 *   Copyright (C) 2004, Kyle McMartin <kyle@{debian.org,parisc-linux.org}>
 *
 *     Based on the previous Harmony incarnations by,
 *       Copyright 2000 (c) Linuxcare Canada, Alex deVries
 *       Copyright 2000-2003 (c) Helge Deller
 *       Copyright 2001 (c) Matthieu Delahaye
 *       Copyright 2001 (c) Jean-Christophe Vaugeois
 *       Copyright 2003 (c) Laurent Canet
 *       Copyright 2004 (c) Stuart Brady
 *
 * Notes:
 *   - graveyard and silence buffers last for lifetime of
 *     the driver. playback and capture buffers are allocated
 *     per _open()/_close().
 * 
 * TODO:
 */

#include <linux/init.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/wait.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/control.h>
#include <sound/rawmidi.h>
#include <sound/initval.h>
#include <sound/info.h>

#include <asm/hardware.h>
#include <asm/parisc-device.h>

#include "harmony.h"

static int index = SNDRV_DEFAULT_IDX1;	/* Index 0-MAX */
static char *id = SNDRV_DEFAULT_STR1;	/* ID for this card */
module_param(index, int, 0444);
MODULE_PARM_DESC(index, "Index value for Harmony driver.");
module_param(id, charp, 0444);
MODULE_PARM_DESC(id, "ID string for Harmony driver.");


static const struct parisc_device_id snd_harmony_devtable[] __initconst = {
	/* bushmaster / flounder */
	{ HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007A }, 
	/* 712 / 715 */
	{ HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007B }, 
	/* pace */
	{ HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007E }, 
	/* outfield / coral II */
	{ HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007F },
	{ 0, }
};

MODULE_DEVICE_TABLE(parisc, snd_harmony_devtable);

#define NAME "harmony"
#define PFX  NAME ": "

static const unsigned int snd_harmony_rates[] = {
	5512, 6615, 8000, 9600,
	11025, 16000, 18900, 22050,
	27428, 32000, 33075, 37800,
	44100, 48000
};

static const unsigned int rate_bits[14] = {
	HARMONY_SR_5KHZ, HARMONY_SR_6KHZ, HARMONY_SR_8KHZ,
	HARMONY_SR_9KHZ, HARMONY_SR_11KHZ, HARMONY_SR_16KHZ,
	HARMONY_SR_18KHZ, HARMONY_SR_22KHZ, HARMONY_SR_27KHZ,
	HARMONY_SR_32KHZ, HARMONY_SR_33KHZ, HARMONY_SR_37KHZ,
	HARMONY_SR_44KHZ, HARMONY_SR_48KHZ
};

static const struct snd_pcm_hw_constraint_list hw_constraint_rates = {
	.count = ARRAY_SIZE(snd_harmony_rates),
	.list = snd_harmony_rates,
	.mask = 0,
};

static inline unsigned long
harmony_read(struct snd_harmony *h, unsigned r)
{
	return __raw_readl(h->iobase + r);
}

static inline void
harmony_write(struct snd_harmony *h, unsigned r, unsigned long v)
{
	__raw_writel(v, h->iobase + r);
}

static inline void
harmony_wait_for_control(struct snd_harmony *h)
{
	while (harmony_read(h, HARMONY_CNTL) & HARMONY_CNTL_C) ;
}

static inline void
harmony_reset(struct snd_harmony *h)
{
	harmony_write(h, HARMONY_RESET, 1);
	mdelay(50);
	harmony_write(h, HARMONY_RESET, 0);
}

static void
harmony_disable_interrupts(struct snd_harmony *h)
{
	u32 dstatus;
	harmony_wait_for_control(h);
	dstatus = harmony_read(h, HARMONY_DSTATUS);
	dstatus &= ~HARMONY_DSTATUS_IE;
	harmony_write(h, HARMONY_DSTATUS, dstatus);
}

static void
harmony_enable_interrupts(struct snd_harmony *h)
{
	u32 dstatus;
	harmony_wait_for_control(h);
	dstatus = harmony_read(h, HARMONY_DSTATUS);
	dstatus |= HARMONY_DSTATUS_IE;
	harmony_write(h, HARMONY_DSTATUS, dstatus);
}

static void
harmony_mute(struct snd_harmony *h)
{
	unsigned long flags;

	spin_lock_irqsave(&h->mixer_lock, flags);
	harmony_wait_for_control(h);
	harmony_write(h, HARMONY_GAINCTL, HARMONY_GAIN_SILENCE);
	spin_unlock_irqrestore(&h->mixer_lock, flags);
}

static void
harmony_unmute(struct snd_harmony *h)
{
	unsigned long flags;

	spin_lock_irqsave(&h->mixer_lock, flags);
	harmony_wait_for_control(h);
	harmony_write(h, HARMONY_GAINCTL, h->st.gain);
	spin_unlock_irqrestore(&h->mixer_lock, flags);
}

static void
harmony_set_control(struct snd_harmony *h)
{
	u32 ctrl;
	unsigned long flags;

	spin_lock_irqsave(&h->lock, flags);

	ctrl = (HARMONY_CNTL_C      |
		(h->st.format << 6) |
		(h->st.stereo << 5) |
		(h->st.rate));

	harmony_wait_for_control(h);
	harmony_write(h, HARMONY_CNTL, ctrl);

	spin_unlock_irqrestore(&h->lock, flags);
}

static irqreturn_t
snd_harmony_interrupt(int irq, void *dev)
{
	u32 dstatus;
	struct snd_harmony *h = dev;

	spin_lock(&h->lock);
	harmony_disable_interrupts(h);
	harmony_wait_for_control(h);
	dstatus = harmony_read(h, HARMONY_DSTATUS);
	spin_unlock(&h->lock);

	if (dstatus & HARMONY_DSTATUS_PN) {
		if (h->psubs && h->st.playing) {
			spin_lock(&h->lock);
			h->pbuf.buf += h->pbuf.count; /* PAGE_SIZE */
			h->pbuf.buf %= h->pbuf.size; /* MAX_BUFS*PAGE_SIZE */

			harmony_write(h, HARMONY_PNXTADD, 
				      h->pbuf.addr + h->pbuf.buf);
			h->stats.play_intr++;
			spin_unlock(&h->lock);
                        snd_pcm_period_elapsed(h->psubs);
		} else {
			spin_lock(&h->lock);
			harmony_write(h, HARMONY_PNXTADD, h->sdma.addr);
			h->stats.silence_intr++;
			spin_unlock(&h->lock);
		}
	}

	if (dstatus & HARMONY_DSTATUS_RN) {
		if (h->csubs && h->st.capturing) {
			spin_lock(&h->lock);
			h->cbuf.buf += h->cbuf.count;
			h->cbuf.buf %= h->cbuf.size;

			harmony_write(h, HARMONY_RNXTADD,
				      h->cbuf.addr + h->cbuf.buf);
			h->stats.rec_intr++;
			spin_unlock(&h->lock);
                        snd_pcm_period_elapsed(h->csubs);
		} else {
			spin_lock(&h->lock);
			harmony_write(h, HARMONY_RNXTADD, h->gdma.addr);
			h->stats.graveyard_intr++;
			spin_unlock(&h->lock);
		}
	}

	spin_lock(&h->lock);
	harmony_enable_interrupts(h);
	spin_unlock(&h->lock);

	return IRQ_HANDLED;
}

static unsigned int 
snd_harmony_rate_bits(int rate)
{
	unsigned int i;
	
	for (i = 0; i < ARRAY_SIZE(snd_harmony_rates); i++)
		if (snd_harmony_rates[i] == rate)
			return rate_bits[i];

	return HARMONY_SR_44KHZ;
}

static const struct snd_pcm_hardware snd_harmony_playback =
{
	.info =	(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 
		 SNDRV_PCM_INFO_JOINT_DUPLEX | SNDRV_PCM_INFO_MMAP_VALID |
		 SNDRV_PCM_INFO_BLOCK_TRANSFER),
	.formats = (SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_MU_LAW |
		    SNDRV_PCM_FMTBIT_A_LAW),
	.rates = (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000 |
		  SNDRV_PCM_RATE_KNOT),
	.rate_min = 5512,
	.rate_max = 48000,
	.channels_min =	1,
	.channels_max =	2,
	.buffer_bytes_max = MAX_BUF_SIZE,
	.period_bytes_min = BUF_SIZE,
	.period_bytes_max = BUF_SIZE,
	.periods_min = 1,
	.periods_max = MAX_BUFS,
	.fifo_size = 0,
};

static const struct snd_pcm_hardware snd_harmony_capture =
{
        .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                 SNDRV_PCM_INFO_JOINT_DUPLEX | SNDRV_PCM_INFO_MMAP_VALID |
                 SNDRV_PCM_INFO_BLOCK_TRANSFER),
        .formats = (SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_MU_LAW |
                    SNDRV_PCM_FMTBIT_A_LAW),
        .rates = (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000 |
		  SNDRV_PCM_RATE_KNOT),
        .rate_min = 5512,
        .rate_max = 48000,
        .channels_min = 1,
        .channels_max = 2,
        .buffer_bytes_max = MAX_BUF_SIZE,
        .period_bytes_min = BUF_SIZE,
        .period_bytes_max = BUF_SIZE,
        .periods_min = 1,
        .periods_max = MAX_BUFS,
        .fifo_size = 0,
};

static int
snd_harmony_playback_trigger(struct snd_pcm_substream *ss, int cmd)
{
	struct snd_harmony *h = snd_pcm_substream_chip(ss);

	if (h->st.capturing)
		return -EBUSY;

	spin_lock(&h->lock);
	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		h->st.playing = 1;
		harmony_write(h, HARMONY_PNXTADD, h->pbuf.addr);
		harmony_write(h, HARMONY_RNXTADD, h->gdma.addr);
		harmony_unmute(h);
		harmony_enable_interrupts(h);
		break;
	case SNDRV_PCM_TRIGGER_STOP:
		h->st.playing = 0;
		harmony_mute(h);
		harmony_write(h, HARMONY_PNXTADD, h->sdma.addr);
		harmony_disable_interrupts(h);
		break;
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
	case SNDRV_PCM_TRIGGER_SUSPEND:
	default:
		spin_unlock(&h->lock);
		snd_BUG();
		return -EINVAL;
	}
	spin_unlock(&h->lock);
	
	return 0;
}

static int
snd_harmony_capture_trigger(struct snd_pcm_substream *ss, int cmd)
{
        struct snd_harmony *h = snd_pcm_substream_chip(ss);

	if (h->st.playing)
		return -EBUSY;

	spin_lock(&h->lock);
        switch (cmd) {
        case SNDRV_PCM_TRIGGER_START:
		h->st.capturing = 1;
                harmony_write(h, HARMONY_PNXTADD, h->sdma.addr);
                harmony_write(h, HARMONY_RNXTADD, h->cbuf.addr);
		harmony_unmute(h);
                harmony_enable_interrupts(h);
		break;
        case SNDRV_PCM_TRIGGER_STOP:
		h->st.capturing = 0;
		harmony_mute(h);
		harmony_write(h, HARMONY_RNXTADD, h->gdma.addr);
		harmony_disable_interrupts(h);
		break;
        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
        case SNDRV_PCM_TRIGGER_SUSPEND:
	default:
		spin_unlock(&h->lock);
		snd_BUG();
                return -EINVAL;
        }
	spin_unlock(&h->lock);
		
        return 0;
}

static int
snd_harmony_set_data_format(struct snd_harmony *h, int fmt, int force)
{
	int o = h->st.format;
	int n;

	switch(fmt) {
	case SNDRV_PCM_FORMAT_S16_BE:
		n = HARMONY_DF_16BIT_LINEAR;
		break;
	case SNDRV_PCM_FORMAT_A_LAW:
		n = HARMONY_DF_8BIT_ALAW;
		break;
	case SNDRV_PCM_FORMAT_MU_LAW:
		n = HARMONY_DF_8BIT_ULAW;
		break;
	default:
		n = HARMONY_DF_16BIT_LINEAR;
		break;
	}

	if (force || o != n) {
		snd_pcm_format_set_silence(fmt, h->sdma.area, SILENCE_BUFSZ / 
					   (snd_pcm_format_physical_width(fmt)
					    / 8));
	}

	return n;
}

static int
snd_harmony_playback_prepare(struct snd_pcm_substream *ss)
{
	struct snd_harmony *h = snd_pcm_substream_chip(ss);
	struct snd_pcm_runtime *rt = ss->runtime;
	
	if (h->st.capturing)
		return -EBUSY;
	
	h->pbuf.size = snd_pcm_lib_buffer_bytes(ss);
	h->pbuf.count = snd_pcm_lib_period_bytes(ss);
	if (h->pbuf.buf >= h->pbuf.size)
		h->pbuf.buf = 0;
	h->st.playing = 0;

	h->st.rate = snd_harmony_rate_bits(rt->rate);
	h->st.format = snd_harmony_set_data_format(h, rt->format, 0);
	
	if (rt->channels == 2)
		h->st.stereo = HARMONY_SS_STEREO;
	else
		h->st.stereo = HARMONY_SS_MONO;

	harmony_set_control(h);

	h->pbuf.addr = rt->dma_addr;

	return 0;
}

static int
snd_harmony_capture_prepare(struct snd_pcm_substream *ss)
{
        struct snd_harmony *h = snd_pcm_substream_chip(ss);
        struct snd_pcm_runtime *rt = ss->runtime;

	if (h->st.playing)
		return -EBUSY;

        h->cbuf.size = snd_pcm_lib_buffer_bytes(ss);
        h->cbuf.count = snd_pcm_lib_period_bytes(ss);
	if (h->cbuf.buf >= h->cbuf.size)
	        h->cbuf.buf = 0;
	h->st.capturing = 0;

        h->st.rate = snd_harmony_rate_bits(rt->rate);
        h->st.format = snd_harmony_set_data_format(h, rt->format, 0);

        if (rt->channels == 2)
                h->st.stereo = HARMONY_SS_STEREO;
        else
                h->st.stereo = HARMONY_SS_MONO;

        harmony_set_control(h);

        h->cbuf.addr = rt->dma_addr;

        return 0;
}

static snd_pcm_uframes_t 
snd_harmony_playback_pointer(struct snd_pcm_substream *ss)
{
	struct snd_pcm_runtime *rt = ss->runtime;
	struct snd_harmony *h = snd_pcm_substream_chip(ss);
	unsigned long pcuradd;
	unsigned long played;

	if (!(h->st.playing) || (h->psubs == NULL)) 
		return 0;

	if ((h->pbuf.addr == 0) || (h->pbuf.size == 0))
		return 0;
	
	pcuradd = harmony_read(h, HARMONY_PCURADD);
	played = pcuradd - h->pbuf.addr;

#ifdef HARMONY_DEBUG
	printk(KERN_DEBUG PFX "playback_pointer is 0x%lx-0x%lx = %d bytes\n", 
	       pcuradd, h->pbuf.addr, played);	
#endif

	if (pcuradd > h->pbuf.addr + h->pbuf.size) {
		return 0;
	}

	return bytes_to_frames(rt, played);
}

static snd_pcm_uframes_t
snd_harmony_capture_pointer(struct snd_pcm_substream *ss)
{
        struct snd_pcm_runtime *rt = ss->runtime;
        struct snd_harmony *h = snd_pcm_substream_chip(ss);
        unsigned long rcuradd;
        unsigned long caught;

        if (!(h->st.capturing) || (h->csubs == NULL))
                return 0;

        if ((h->cbuf.addr == 0) || (h->cbuf.size == 0))
                return 0;

        rcuradd = harmony_read(h, HARMONY_RCURADD);
        caught = rcuradd - h->cbuf.addr;

#ifdef HARMONY_DEBUG
        printk(KERN_DEBUG PFX "capture_pointer is 0x%lx-0x%lx = %d bytes\n",
               rcuradd, h->cbuf.addr, caught);
#endif

        if (rcuradd > h->cbuf.addr + h->cbuf.size) {
		return 0;
	}

        return bytes_to_frames(rt, caught);
}

static int 
snd_harmony_playback_open(struct snd_pcm_substream *ss)
{
	struct snd_harmony *h = snd_pcm_substream_chip(ss);
	struct snd_pcm_runtime *rt = ss->runtime;
	int err;
	
	h->psubs = ss;
	rt->hw = snd_harmony_playback;
	snd_pcm_hw_constraint_list(rt, 0, SNDRV_PCM_HW_PARAM_RATE, 
				   &hw_constraint_rates);
	
	err = snd_pcm_hw_constraint_integer(rt, SNDRV_PCM_HW_PARAM_PERIODS);
	if (err < 0)
		return err;
	
	return 0;
}

static int
snd_harmony_capture_open(struct snd_pcm_substream *ss)
{
        struct snd_harmony *h = snd_pcm_substream_chip(ss);
        struct snd_pcm_runtime *rt = ss->runtime;
        int err;

        h->csubs = ss;
        rt->hw = snd_harmony_capture;
        snd_pcm_hw_constraint_list(rt, 0, SNDRV_PCM_HW_PARAM_RATE,
                                   &hw_constraint_rates);

        err = snd_pcm_hw_constraint_integer(rt, SNDRV_PCM_HW_PARAM_PERIODS);
        if (err < 0)
                return err;

        return 0;
}

static int 
snd_harmony_playback_close(struct snd_pcm_substream *ss)
{
	struct snd_harmony *h = snd_pcm_substream_chip(ss);
	h->psubs = NULL;
	return 0;
}

static int
snd_harmony_capture_close(struct snd_pcm_substream *ss)
{
        struct snd_harmony *h = snd_pcm_substream_chip(ss);
        h->csubs = NULL;
        return 0;
}

static int 
snd_harmony_hw_params(struct snd_pcm_substream *ss,
		      struct snd_pcm_hw_params *hw)
{
	int err;
	struct snd_harmony *h = snd_pcm_substream_chip(ss);
	
	err = snd_pcm_lib_malloc_pages(ss, params_buffer_bytes(hw));
	if (err > 0 && h->dma.type == SNDRV_DMA_TYPE_CONTINUOUS)
		ss->runtime->dma_addr = __pa(ss->runtime->dma_area);
	
	return err;
}

static int 
snd_harmony_hw_free(struct snd_pcm_substream *ss) 
{
	return snd_pcm_lib_free_pages(ss);
}

static const struct snd_pcm_ops snd_harmony_playback_ops = {
	.open =	snd_harmony_playback_open,
	.close = snd_harmony_playback_close,
	.ioctl = snd_pcm_lib_ioctl,
	.hw_params = snd_harmony_hw_params,
	.hw_free = snd_harmony_hw_free,
	.prepare = snd_harmony_playback_prepare,
	.trigger = snd_harmony_playback_trigger,
 	.pointer = snd_harmony_playback_pointer,
};

static const struct snd_pcm_ops snd_harmony_capture_ops = {
        .open = snd_harmony_capture_open,
        .close = snd_harmony_capture_close,
        .ioctl = snd_pcm_lib_ioctl,
        .hw_params = snd_harmony_hw_params,
        .hw_free = snd_harmony_hw_free,
        .prepare = snd_harmony_capture_prepare,
        .trigger = snd_harmony_capture_trigger,
        .pointer = snd_harmony_capture_pointer,
};

static int 
snd_harmony_pcm_init(struct snd_harmony *h)
{
	struct snd_pcm *pcm;
	int err;

	if (snd_BUG_ON(!h))
		return -EINVAL;

	harmony_disable_interrupts(h);
	
   	err = snd_pcm_new(h->card, "harmony", 0, 1, 1, &pcm);
	if (err < 0)
		return err;
	
	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, 
			&snd_harmony_playback_ops);
	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
			&snd_harmony_capture_ops);

	pcm->private_data = h;
	pcm->info_flags = 0;
	strcpy(pcm->name, "harmony");
	h->pcm = pcm;

	h->psubs = NULL;
	h->csubs = NULL;
	
	/* initialize graveyard buffer */
	h->dma.type = SNDRV_DMA_TYPE_DEV;
	h->dma.dev = &h->dev->dev;
	err = snd_dma_alloc_pages(h->dma.type,
				  h->dma.dev,
				  BUF_SIZE*GRAVEYARD_BUFS,
				  &h->gdma);
	if (err < 0) {
		printk(KERN_ERR PFX "cannot allocate graveyard buffer!\n");
		return err;
	}
	
	/* initialize silence buffers */
	err = snd_dma_alloc_pages(h->dma.type,
				  h->dma.dev,
				  BUF_SIZE*SILENCE_BUFS,
				  &h->sdma);
	if (err < 0) {
		printk(KERN_ERR PFX "cannot allocate silence buffer!\n");
		return err;
	}

	/* pre-allocate space for DMA */
	snd_pcm_lib_preallocate_pages_for_all(pcm, h->dma.type, h->dma.dev,
					      MAX_BUF_SIZE, MAX_BUF_SIZE);

	h->st.format = snd_harmony_set_data_format(h,
		SNDRV_PCM_FORMAT_S16_BE, 1);

	return 0;
}

static void 
snd_harmony_set_new_gain(struct snd_harmony *h)
{
 	harmony_wait_for_control(h);
	harmony_write(h, HARMONY_GAINCTL, h->st.gain);
}

static int 
snd_harmony_mixercontrol_info(struct snd_kcontrol *kc, 
			      struct snd_ctl_elem_info *uinfo)
{
	int mask = (kc->private_value >> 16) & 0xff;
	int left_shift = (kc->private_value) & 0xff;
	int right_shift = (kc->private_value >> 8) & 0xff;
	
	uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : 
		       SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = left_shift == right_shift ? 1 : 2;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = mask;

	return 0;
}

static int 
snd_harmony_volume_get(struct snd_kcontrol *kc, 
		       struct snd_ctl_elem_value *ucontrol)
{
	struct snd_harmony *h = snd_kcontrol_chip(kc);
	int shift_left = (kc->private_value) & 0xff;
	int shift_right = (kc->private_value >> 8) & 0xff;
	int mask = (kc->private_value >> 16) & 0xff;
	int invert = (kc->private_value >> 24) & 0xff;
	int left, right;
	
	spin_lock_irq(&h->mixer_lock);

	left = (h->st.gain >> shift_left) & mask;
	right = (h->st.gain >> shift_right) & mask;
	if (invert) {
		left = mask - left;
		right = mask - right;
	}
	
	ucontrol->value.integer.value[0] = left;
	if (shift_left != shift_right)
		ucontrol->value.integer.value[1] = right;

	spin_unlock_irq(&h->mixer_lock);

	return 0;
}  

static int 
snd_harmony_volume_put(struct snd_kcontrol *kc, 
		       struct snd_ctl_elem_value *ucontrol)
{
	struct snd_harmony *h = snd_kcontrol_chip(kc);
	int shift_left = (kc->private_value) & 0xff;
	int shift_right = (kc->private_value >> 8) & 0xff;
	int mask = (kc->private_value >> 16) & 0xff;
	int invert = (kc->private_value >> 24) & 0xff;
	int left, right;
	int old_gain = h->st.gain;
	
	spin_lock_irq(&h->mixer_lock);

	left = ucontrol->value.integer.value[0] & mask;
	if (invert)
		left = mask - left;
	h->st.gain &= ~( (mask << shift_left ) );
 	h->st.gain |= (left << shift_left);

	if (shift_left != shift_right) {
		right = ucontrol->value.integer.value[1] & mask;
		if (invert)
			right = mask - right;
		h->st.gain &= ~( (mask << shift_right) );
		h->st.gain |= (right << shift_right);
	}

	snd_harmony_set_new_gain(h);

	spin_unlock_irq(&h->mixer_lock);
	
	return h->st.gain != old_gain;
}

static int 
snd_harmony_captureroute_info(struct snd_kcontrol *kc, 
			      struct snd_ctl_elem_info *uinfo)
{
	static const char * const texts[2] = { "Line", "Mic" };

	return snd_ctl_enum_info(uinfo, 1, 2, texts);
}

static int 
snd_harmony_captureroute_get(struct snd_kcontrol *kc, 
			     struct snd_ctl_elem_value *ucontrol)
{
	struct snd_harmony *h = snd_kcontrol_chip(kc);
	int value;
	
	spin_lock_irq(&h->mixer_lock);

	value = (h->st.gain >> HARMONY_GAIN_IS_SHIFT) & 1;
	ucontrol->value.enumerated.item[0] = value;

	spin_unlock_irq(&h->mixer_lock);

	return 0;
}  

static int 
snd_harmony_captureroute_put(struct snd_kcontrol *kc, 
			     struct snd_ctl_elem_value *ucontrol)
{
	struct snd_harmony *h = snd_kcontrol_chip(kc);
	int value;
	int old_gain = h->st.gain;
	
	spin_lock_irq(&h->mixer_lock);

	value = ucontrol->value.enumerated.item[0] & 1;
	h->st.gain &= ~HARMONY_GAIN_IS_MASK;
 	h->st.gain |= value << HARMONY_GAIN_IS_SHIFT;

	snd_harmony_set_new_gain(h);

	spin_unlock_irq(&h->mixer_lock);
	
	return h->st.gain != old_gain;
}

#define HARMONY_CONTROLS	ARRAY_SIZE(snd_harmony_controls)

#define HARMONY_VOLUME(xname, left_shift, right_shift, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname,                \
  .info = snd_harmony_mixercontrol_info,                             \
  .get = snd_harmony_volume_get, .put = snd_harmony_volume_put,      \
  .private_value = ((left_shift) | ((right_shift) << 8) |            \
                   ((mask) << 16) | ((invert) << 24)) }

static struct snd_kcontrol_new snd_harmony_controls[] = {
	HARMONY_VOLUME("Master Playback Volume", HARMONY_GAIN_LO_SHIFT, 
		       HARMONY_GAIN_RO_SHIFT, HARMONY_GAIN_OUT, 1),
	HARMONY_VOLUME("Capture Volume", HARMONY_GAIN_LI_SHIFT,
		       HARMONY_GAIN_RI_SHIFT, HARMONY_GAIN_IN, 0),
	HARMONY_VOLUME("Monitor Volume", HARMONY_GAIN_MA_SHIFT,
		       HARMONY_GAIN_MA_SHIFT, HARMONY_GAIN_MA, 1),
	{
		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
		.name = "Input Route",
		.info = snd_harmony_captureroute_info,
		.get = snd_harmony_captureroute_get,
		.put = snd_harmony_captureroute_put
	},
	HARMONY_VOLUME("Internal Speaker Switch", HARMONY_GAIN_SE_SHIFT,
		       HARMONY_GAIN_SE_SHIFT, 1, 0),
	HARMONY_VOLUME("Line-Out Switch", HARMONY_GAIN_LE_SHIFT,
		       HARMONY_GAIN_LE_SHIFT, 1, 0),
	HARMONY_VOLUME("Headphones Switch", HARMONY_GAIN_HE_SHIFT,
		       HARMONY_GAIN_HE_SHIFT, 1, 0),
};

static void
snd_harmony_mixer_reset(struct snd_harmony *h)
{
	harmony_mute(h);
	harmony_reset(h);
	h->st.gain = HARMONY_GAIN_DEFAULT;
	harmony_unmute(h);
}

static int
snd_harmony_mixer_init(struct snd_harmony *h)
{
	struct snd_card *card;
	int idx, err;

	if (snd_BUG_ON(!h))
		return -EINVAL;
	card = h->card;
	strcpy(card->mixername, "Harmony Gain control interface");

	for (idx = 0; idx < HARMONY_CONTROLS; idx++) {
		err = snd_ctl_add(card, 
				  snd_ctl_new1(&snd_harmony_controls[idx], h));
		if (err < 0)
			return err;
	}
	
	snd_harmony_mixer_reset(h);

	return 0;
}

static int
snd_harmony_free(struct snd_harmony *h)
{
        if (h->gdma.addr)
                snd_dma_free_pages(&h->gdma);
        if (h->sdma.addr)
                snd_dma_free_pages(&h->sdma);

	if (h->irq >= 0)
		free_irq(h->irq, h);

	iounmap(h->iobase);
	kfree(h);
	return 0;
}

static int
snd_harmony_dev_free(struct snd_device *dev)
{
	struct snd_harmony *h = dev->device_data;
	return snd_harmony_free(h);
}

static int
snd_harmony_create(struct snd_card *card, 
		   struct parisc_device *padev, 
		   struct snd_harmony **rchip)
{
	int err;
	struct snd_harmony *h;
	static struct snd_device_ops ops = {
		.dev_free = snd_harmony_dev_free,
	};

	*rchip = NULL;

	h = kzalloc(sizeof(*h), GFP_KERNEL);
	if (h == NULL)
		return -ENOMEM;

	h->hpa = padev->hpa.start;
	h->card = card;
	h->dev = padev;
	h->irq = -1;
	h->iobase = ioremap_nocache(padev->hpa.start, HARMONY_SIZE);
	if (h->iobase == NULL) {
		printk(KERN_ERR PFX "unable to remap hpa 0x%lx\n",
		       (unsigned long)padev->hpa.start);
		err = -EBUSY;
		goto free_and_ret;
	}
		
	err = request_irq(padev->irq, snd_harmony_interrupt, 0,
			  "harmony", h);
	if (err) {
		printk(KERN_ERR PFX "could not obtain interrupt %d",
		       padev->irq);
		goto free_and_ret;
	}
	h->irq = padev->irq;

	spin_lock_init(&h->mixer_lock);
	spin_lock_init(&h->lock);

        if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL,
                                  h, &ops)) < 0) {
                goto free_and_ret;
        }

	*rchip = h;

	return 0;

free_and_ret:
	snd_harmony_free(h);
	return err;
}

static int __init
snd_harmony_probe(struct parisc_device *padev)
{
	int err;
	struct snd_card *card;
	struct snd_harmony *h;

	err = snd_card_new(&padev->dev, index, id, THIS_MODULE, 0, &card);
	if (err < 0)
		return err;

	err = snd_harmony_create(card, padev, &h);
	if (err < 0)
		goto free_and_ret;

	err = snd_harmony_pcm_init(h);
	if (err < 0)
		goto free_and_ret;

	err = snd_harmony_mixer_init(h);
	if (err < 0)
		goto free_and_ret;

	strcpy(card->driver, "harmony");
	strcpy(card->shortname, "Harmony");
	sprintf(card->longname, "%s at 0x%lx, irq %i",
		card->shortname, h->hpa, h->irq);

	err = snd_card_register(card);
	if (err < 0)
		goto free_and_ret;

	parisc_set_drvdata(padev, card);
	return 0;

free_and_ret:
	snd_card_free(card);
	return err;
}

static int __exit
snd_harmony_remove(struct parisc_device *padev)
{
	snd_card_free(parisc_get_drvdata(padev));
	return 0;
}

static struct parisc_driver snd_harmony_driver __refdata = {
	.name = "harmony",
	.id_table = snd_harmony_devtable,
	.probe = snd_harmony_probe,
	.remove = __exit_p(snd_harmony_remove),
};

static int __init 
alsa_harmony_init(void)
{
	return register_parisc_driver(&snd_harmony_driver);
}

static void __exit
alsa_harmony_fini(void)
{
	unregister_parisc_driver(&snd_harmony_driver);
}

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kyle McMartin <kyle@parisc-linux.org>");
MODULE_DESCRIPTION("Harmony sound driver");

module_init(alsa_harmony_init);
module_exit(alsa_harmony_fini);
back to top