Revision f32393c943e297b8ae180c8f83d81a156c7d0412 authored by Nathan Fontenot on 30 April 2015, 01:42:06 UTC, committed by Michael Ellerman on 01 May 2015, 03:47:24 UTC
The incorrect ordering of operations during cpu dlpar add results in invalid
affinity for the cpu being added. The ibm,associativity property in the
device tree is populated with all zeroes for the added cpu which results in
invalid affinity mappings and all cpus appear to belong to node 0.

This occurs because rtas configure-connector is called prior to making the
rtas set-indicator calls. Phyp does not assign affinity information
for a cpu until the rtas set-indicator calls are made to set the isolation
and allocation state.

Correct the order of operations to make the rtas set-indicator
calls (done in dlpar_acquire_drc) before calling rtas configure-connector.

Fixes: 1a8061c46c46 ("powerpc/pseries: Add kernel based CPU DLPAR handling")

Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
1 parent 2fa30fe
Raw File
hsi.txt
HSI - High-speed Synchronous Serial Interface

1. Introduction
~~~~~~~~~~~~~~~

High Speed Syncronous Interface (HSI) is a fullduplex, low latency protocol,
that is optimized for die-level interconnect between an Application Processor
and a Baseband chipset. It has been specified by the MIPI alliance in 2003 and
implemented by multiple vendors since then.

The HSI interface supports full duplex communication over multiple channels
(typically 8) and is capable of reaching speeds up to 200 Mbit/s.

The serial protocol uses two signals, DATA and FLAG as combined data and clock
signals and an additional READY signal for flow control. An additional WAKE
signal can be used to wakeup the chips from standby modes. The signals are
commonly prefixed by AC for signals going from the application die to the
cellular die and CA for signals going the other way around.

+------------+                                 +---------------+
|  Cellular  |                                 |  Application  |
|    Die     |                                 |      Die      |
|            | - - - - - - CAWAKE - - - - - - >|               |
|           T|------------ CADATA ------------>|R              |
|           X|------------ CAFLAG ------------>|X              |
|            |<----------- ACREADY ------------|               |
|            |                                 |               |
|            |                                 |               |
|            |< - - - - -  ACWAKE - - - - - - -|               |
|           R|<----------- ACDATA -------------|T              |
|           X|<----------- ACFLAG -------------|X              |
|            |------------ CAREADY ----------->|               |
|            |                                 |               |
|            |                                 |               |
+------------+                                 +---------------+

2. HSI Subsystem in Linux
~~~~~~~~~~~~~~~~~~~~~~~~~

In the Linux kernel the hsi subsystem is supposed to be used for HSI devices.
The hsi subsystem contains drivers for hsi controllers including support for
multi-port controllers and provides a generic API for using the HSI ports.

It also contains HSI client drivers, which make use of the generic API to
implement a protocol used on the HSI interface. These client drivers can
use an arbitrary number of channels.

3. hsi-char Device
~~~~~~~~~~~~~~~~~~

Each port automatically registers a generic client driver called hsi_char,
which provides a charecter device for userspace representing the HSI port.
It can be used to communicate via HSI from userspace. Userspace may
configure the hsi_char device using the following ioctl commands:

* HSC_RESET:
 - flush the HSI port

* HSC_SET_PM
 - enable or disable the client.

* HSC_SEND_BREAK
 - send break

* HSC_SET_RX
 - set RX configuration

* HSC_GET_RX
 - get RX configuration

* HSC_SET_TX
 - set TX configuration

* HSC_GET_TX
 - get TX configuration
back to top