Revision fb1a3132ee1ac968316e45d21a48703a6db0b6c3 authored by Vlad Buslov on 31 May 2021, 13:28:39 UTC, committed by Saeed Mahameed on 10 June 2021, 00:20:03 UTC
Function mlx5e_rep_neigh_update() wasn't updated to accommodate rtnl lock
removal from TC filter update path and properly handle concurrent encap
entry insertion/deletion which can lead to following use-after-free:

 [23827.464923] ==================================================================
 [23827.469446] BUG: KASAN: use-after-free in mlx5e_encap_take+0x72/0x140 [mlx5_core]
 [23827.470971] Read of size 4 at addr ffff8881d132228c by task kworker/u20:6/21635
 [23827.472251]
 [23827.472615] CPU: 9 PID: 21635 Comm: kworker/u20:6 Not tainted 5.13.0-rc3+ #5
 [23827.473788] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
 [23827.475639] Workqueue: mlx5e mlx5e_rep_neigh_update [mlx5_core]
 [23827.476731] Call Trace:
 [23827.477260]  dump_stack+0xbb/0x107
 [23827.477906]  print_address_description.constprop.0+0x18/0x140
 [23827.478896]  ? mlx5e_encap_take+0x72/0x140 [mlx5_core]
 [23827.479879]  ? mlx5e_encap_take+0x72/0x140 [mlx5_core]
 [23827.480905]  kasan_report.cold+0x7c/0xd8
 [23827.481701]  ? mlx5e_encap_take+0x72/0x140 [mlx5_core]
 [23827.482744]  kasan_check_range+0x145/0x1a0
 [23827.493112]  mlx5e_encap_take+0x72/0x140 [mlx5_core]
 [23827.494054]  ? mlx5e_tc_tun_encap_info_equal_generic+0x140/0x140 [mlx5_core]
 [23827.495296]  mlx5e_rep_neigh_update+0x41e/0x5e0 [mlx5_core]
 [23827.496338]  ? mlx5e_rep_neigh_entry_release+0xb80/0xb80 [mlx5_core]
 [23827.497486]  ? read_word_at_a_time+0xe/0x20
 [23827.498250]  ? strscpy+0xa0/0x2a0
 [23827.498889]  process_one_work+0x8ac/0x14e0
 [23827.499638]  ? lockdep_hardirqs_on_prepare+0x400/0x400
 [23827.500537]  ? pwq_dec_nr_in_flight+0x2c0/0x2c0
 [23827.501359]  ? rwlock_bug.part.0+0x90/0x90
 [23827.502116]  worker_thread+0x53b/0x1220
 [23827.502831]  ? process_one_work+0x14e0/0x14e0
 [23827.503627]  kthread+0x328/0x3f0
 [23827.504254]  ? _raw_spin_unlock_irq+0x24/0x40
 [23827.505065]  ? __kthread_bind_mask+0x90/0x90
 [23827.505912]  ret_from_fork+0x1f/0x30
 [23827.506621]
 [23827.506987] Allocated by task 28248:
 [23827.507694]  kasan_save_stack+0x1b/0x40
 [23827.508476]  __kasan_kmalloc+0x7c/0x90
 [23827.509197]  mlx5e_attach_encap+0xde1/0x1d40 [mlx5_core]
 [23827.510194]  mlx5e_tc_add_fdb_flow+0x397/0xc40 [mlx5_core]
 [23827.511218]  __mlx5e_add_fdb_flow+0x519/0xb30 [mlx5_core]
 [23827.512234]  mlx5e_configure_flower+0x191c/0x4870 [mlx5_core]
 [23827.513298]  tc_setup_cb_add+0x1d5/0x420
 [23827.514023]  fl_hw_replace_filter+0x382/0x6a0 [cls_flower]
 [23827.514975]  fl_change+0x2ceb/0x4a51 [cls_flower]
 [23827.515821]  tc_new_tfilter+0x89a/0x2070
 [23827.516548]  rtnetlink_rcv_msg+0x644/0x8c0
 [23827.517300]  netlink_rcv_skb+0x11d/0x340
 [23827.518021]  netlink_unicast+0x42b/0x700
 [23827.518742]  netlink_sendmsg+0x743/0xc20
 [23827.519467]  sock_sendmsg+0xb2/0xe0
 [23827.520131]  ____sys_sendmsg+0x590/0x770
 [23827.520851]  ___sys_sendmsg+0xd8/0x160
 [23827.521552]  __sys_sendmsg+0xb7/0x140
 [23827.522238]  do_syscall_64+0x3a/0x70
 [23827.522907]  entry_SYSCALL_64_after_hwframe+0x44/0xae
 [23827.523797]
 [23827.524163] Freed by task 25948:
 [23827.524780]  kasan_save_stack+0x1b/0x40
 [23827.525488]  kasan_set_track+0x1c/0x30
 [23827.526187]  kasan_set_free_info+0x20/0x30
 [23827.526968]  __kasan_slab_free+0xed/0x130
 [23827.527709]  slab_free_freelist_hook+0xcf/0x1d0
 [23827.528528]  kmem_cache_free_bulk+0x33a/0x6e0
 [23827.529317]  kfree_rcu_work+0x55f/0xb70
 [23827.530024]  process_one_work+0x8ac/0x14e0
 [23827.530770]  worker_thread+0x53b/0x1220
 [23827.531480]  kthread+0x328/0x3f0
 [23827.532114]  ret_from_fork+0x1f/0x30
 [23827.532785]
 [23827.533147] Last potentially related work creation:
 [23827.534007]  kasan_save_stack+0x1b/0x40
 [23827.534710]  kasan_record_aux_stack+0xab/0xc0
 [23827.535492]  kvfree_call_rcu+0x31/0x7b0
 [23827.536206]  mlx5e_tc_del_fdb_flow+0x577/0xef0 [mlx5_core]
 [23827.537305]  mlx5e_flow_put+0x49/0x80 [mlx5_core]
 [23827.538290]  mlx5e_delete_flower+0x6d1/0xe60 [mlx5_core]
 [23827.539300]  tc_setup_cb_destroy+0x18e/0x2f0
 [23827.540144]  fl_hw_destroy_filter+0x1d2/0x310 [cls_flower]
 [23827.541148]  __fl_delete+0x4dc/0x660 [cls_flower]
 [23827.541985]  fl_delete+0x97/0x160 [cls_flower]
 [23827.542782]  tc_del_tfilter+0x7ab/0x13d0
 [23827.543503]  rtnetlink_rcv_msg+0x644/0x8c0
 [23827.544257]  netlink_rcv_skb+0x11d/0x340
 [23827.544981]  netlink_unicast+0x42b/0x700
 [23827.545700]  netlink_sendmsg+0x743/0xc20
 [23827.546424]  sock_sendmsg+0xb2/0xe0
 [23827.547084]  ____sys_sendmsg+0x590/0x770
 [23827.547850]  ___sys_sendmsg+0xd8/0x160
 [23827.548606]  __sys_sendmsg+0xb7/0x140
 [23827.549303]  do_syscall_64+0x3a/0x70
 [23827.549969]  entry_SYSCALL_64_after_hwframe+0x44/0xae
 [23827.550853]
 [23827.551217] The buggy address belongs to the object at ffff8881d1322200
 [23827.551217]  which belongs to the cache kmalloc-256 of size 256
 [23827.553341] The buggy address is located 140 bytes inside of
 [23827.553341]  256-byte region [ffff8881d1322200, ffff8881d1322300)
 [23827.555747] The buggy address belongs to the page:
 [23827.556847] page:00000000898762aa refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1d1320
 [23827.558651] head:00000000898762aa order:2 compound_mapcount:0 compound_pincount:0
 [23827.559961] flags: 0x2ffff800010200(slab|head|node=0|zone=2|lastcpupid=0x1ffff)
 [23827.561243] raw: 002ffff800010200 dead000000000100 dead000000000122 ffff888100042b40
 [23827.562653] raw: 0000000000000000 0000000000200020 00000001ffffffff 0000000000000000
 [23827.564112] page dumped because: kasan: bad access detected
 [23827.565439]
 [23827.565932] Memory state around the buggy address:
 [23827.566917]  ffff8881d1322180: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 [23827.568485]  ffff8881d1322200: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
 [23827.569818] >ffff8881d1322280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
 [23827.571143]                       ^
 [23827.571879]  ffff8881d1322300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 [23827.573283]  ffff8881d1322380: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 [23827.574654] ==================================================================

Most of the necessary logic is already correctly implemented by
mlx5e_get_next_valid_encap() helper that is used in neigh stats update
handler. Make the handler generic by renaming it to
mlx5e_get_next_matching_encap() and use callback to test whether flow is
matching instead of hardcoded check for 'valid' flag value. Implement
mlx5e_get_next_valid_encap() by calling mlx5e_get_next_matching_encap()
with callback that tests encap MLX5_ENCAP_ENTRY_VALID flag. Implement new
mlx5e_get_next_init_encap() helper by calling
mlx5e_get_next_matching_encap() with callback that tests encap completion
result to be non-error and use it in mlx5e_rep_neigh_update() to safely
iterate over nhe->encap_list.

Remove encap completion logic from mlx5e_rep_update_flows() since the encap
entries passed to this function are already guaranteed to be properly
initialized by similar code in mlx5e_get_next_init_encap().

Fixes: 2a1f1768fa17 ("net/mlx5e: Refactor neigh update for concurrent execution")
Signed-off-by: Vlad Buslov <vladbu@nvidia.com>
Reviewed-by: Roi Dayan <roid@nvidia.com>
Signed-off-by: Saeed Mahameed <saeedm@nvidia.com>
1 parent 2bf8d2a
Raw File
sm2.c
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
 * SM2 asymmetric public-key algorithm
 * as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012 SM2 and
 * described at https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
 *
 * Copyright (c) 2020, Alibaba Group.
 * Authors: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
 */

#include <linux/module.h>
#include <linux/mpi.h>
#include <crypto/internal/akcipher.h>
#include <crypto/akcipher.h>
#include <crypto/hash.h>
#include <crypto/sm3_base.h>
#include <crypto/rng.h>
#include <crypto/sm2.h>
#include "sm2signature.asn1.h"

#define MPI_NBYTES(m)   ((mpi_get_nbits(m) + 7) / 8)

struct ecc_domain_parms {
	const char *desc;           /* Description of the curve.  */
	unsigned int nbits;         /* Number of bits.  */
	unsigned int fips:1; /* True if this is a FIPS140-2 approved curve */

	/* The model describing this curve.  This is mainly used to select
	 * the group equation.
	 */
	enum gcry_mpi_ec_models model;

	/* The actual ECC dialect used.  This is used for curve specific
	 * optimizations and to select encodings etc.
	 */
	enum ecc_dialects dialect;

	const char *p;              /* The prime defining the field.  */
	const char *a, *b;          /* The coefficients.  For Twisted Edwards
				     * Curves b is used for d.  For Montgomery
				     * Curves (a,b) has ((A-2)/4,B^-1).
				     */
	const char *n;              /* The order of the base point.  */
	const char *g_x, *g_y;      /* Base point.  */
	unsigned int h;             /* Cofactor.  */
};

static const struct ecc_domain_parms sm2_ecp = {
	.desc = "sm2p256v1",
	.nbits = 256,
	.fips = 0,
	.model = MPI_EC_WEIERSTRASS,
	.dialect = ECC_DIALECT_STANDARD,
	.p   = "0xfffffffeffffffffffffffffffffffffffffffff00000000ffffffffffffffff",
	.a   = "0xfffffffeffffffffffffffffffffffffffffffff00000000fffffffffffffffc",
	.b   = "0x28e9fa9e9d9f5e344d5a9e4bcf6509a7f39789f515ab8f92ddbcbd414d940e93",
	.n   = "0xfffffffeffffffffffffffffffffffff7203df6b21c6052b53bbf40939d54123",
	.g_x = "0x32c4ae2c1f1981195f9904466a39c9948fe30bbff2660be1715a4589334c74c7",
	.g_y = "0xbc3736a2f4f6779c59bdcee36b692153d0a9877cc62a474002df32e52139f0a0",
	.h = 1
};

static int sm2_ec_ctx_init(struct mpi_ec_ctx *ec)
{
	const struct ecc_domain_parms *ecp = &sm2_ecp;
	MPI p, a, b;
	MPI x, y;
	int rc = -EINVAL;

	p = mpi_scanval(ecp->p);
	a = mpi_scanval(ecp->a);
	b = mpi_scanval(ecp->b);
	if (!p || !a || !b)
		goto free_p;

	x = mpi_scanval(ecp->g_x);
	y = mpi_scanval(ecp->g_y);
	if (!x || !y)
		goto free;

	rc = -ENOMEM;
	/* mpi_ec_setup_elliptic_curve */
	ec->G = mpi_point_new(0);
	if (!ec->G)
		goto free;

	mpi_set(ec->G->x, x);
	mpi_set(ec->G->y, y);
	mpi_set_ui(ec->G->z, 1);

	rc = -EINVAL;
	ec->n = mpi_scanval(ecp->n);
	if (!ec->n) {
		mpi_point_release(ec->G);
		goto free;
	}

	ec->h = ecp->h;
	ec->name = ecp->desc;
	mpi_ec_init(ec, ecp->model, ecp->dialect, 0, p, a, b);

	rc = 0;

free:
	mpi_free(x);
	mpi_free(y);
free_p:
	mpi_free(p);
	mpi_free(a);
	mpi_free(b);

	return rc;
}

static void sm2_ec_ctx_deinit(struct mpi_ec_ctx *ec)
{
	mpi_ec_deinit(ec);

	memset(ec, 0, sizeof(*ec));
}

/* RESULT must have been initialized and is set on success to the
 * point given by VALUE.
 */
static int sm2_ecc_os2ec(MPI_POINT result, MPI value)
{
	int rc;
	size_t n;
	unsigned char *buf;
	MPI x, y;

	n = MPI_NBYTES(value);
	buf = kmalloc(n, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	rc = mpi_print(GCRYMPI_FMT_USG, buf, n, &n, value);
	if (rc)
		goto err_freebuf;

	rc = -EINVAL;
	if (n < 1 || ((n - 1) % 2))
		goto err_freebuf;
	/* No support for point compression */
	if (*buf != 0x4)
		goto err_freebuf;

	rc = -ENOMEM;
	n = (n - 1) / 2;
	x = mpi_read_raw_data(buf + 1, n);
	if (!x)
		goto err_freebuf;
	y = mpi_read_raw_data(buf + 1 + n, n);
	if (!y)
		goto err_freex;

	mpi_normalize(x);
	mpi_normalize(y);
	mpi_set(result->x, x);
	mpi_set(result->y, y);
	mpi_set_ui(result->z, 1);

	rc = 0;

	mpi_free(y);
err_freex:
	mpi_free(x);
err_freebuf:
	kfree(buf);
	return rc;
}

struct sm2_signature_ctx {
	MPI sig_r;
	MPI sig_s;
};

int sm2_get_signature_r(void *context, size_t hdrlen, unsigned char tag,
				const void *value, size_t vlen)
{
	struct sm2_signature_ctx *sig = context;

	if (!value || !vlen)
		return -EINVAL;

	sig->sig_r = mpi_read_raw_data(value, vlen);
	if (!sig->sig_r)
		return -ENOMEM;

	return 0;
}

int sm2_get_signature_s(void *context, size_t hdrlen, unsigned char tag,
				const void *value, size_t vlen)
{
	struct sm2_signature_ctx *sig = context;

	if (!value || !vlen)
		return -EINVAL;

	sig->sig_s = mpi_read_raw_data(value, vlen);
	if (!sig->sig_s)
		return -ENOMEM;

	return 0;
}

static int sm2_z_digest_update(struct shash_desc *desc,
			MPI m, unsigned int pbytes)
{
	static const unsigned char zero[32];
	unsigned char *in;
	unsigned int inlen;

	in = mpi_get_buffer(m, &inlen, NULL);
	if (!in)
		return -EINVAL;

	if (inlen < pbytes) {
		/* padding with zero */
		crypto_sm3_update(desc, zero, pbytes - inlen);
		crypto_sm3_update(desc, in, inlen);
	} else if (inlen > pbytes) {
		/* skip the starting zero */
		crypto_sm3_update(desc, in + inlen - pbytes, pbytes);
	} else {
		crypto_sm3_update(desc, in, inlen);
	}

	kfree(in);
	return 0;
}

static int sm2_z_digest_update_point(struct shash_desc *desc,
		MPI_POINT point, struct mpi_ec_ctx *ec, unsigned int pbytes)
{
	MPI x, y;
	int ret = -EINVAL;

	x = mpi_new(0);
	y = mpi_new(0);

	if (!mpi_ec_get_affine(x, y, point, ec) &&
		!sm2_z_digest_update(desc, x, pbytes) &&
		!sm2_z_digest_update(desc, y, pbytes))
		ret = 0;

	mpi_free(x);
	mpi_free(y);
	return ret;
}

int sm2_compute_z_digest(struct crypto_akcipher *tfm,
			const unsigned char *id, size_t id_len,
			unsigned char dgst[SM3_DIGEST_SIZE])
{
	struct mpi_ec_ctx *ec = akcipher_tfm_ctx(tfm);
	uint16_t bits_len;
	unsigned char entl[2];
	SHASH_DESC_ON_STACK(desc, NULL);
	unsigned int pbytes;

	if (id_len > (USHRT_MAX / 8) || !ec->Q)
		return -EINVAL;

	bits_len = (uint16_t)(id_len * 8);
	entl[0] = bits_len >> 8;
	entl[1] = bits_len & 0xff;

	pbytes = MPI_NBYTES(ec->p);

	/* ZA = H256(ENTLA | IDA | a | b | xG | yG | xA | yA) */
	sm3_base_init(desc);
	crypto_sm3_update(desc, entl, 2);
	crypto_sm3_update(desc, id, id_len);

	if (sm2_z_digest_update(desc, ec->a, pbytes) ||
		sm2_z_digest_update(desc, ec->b, pbytes) ||
		sm2_z_digest_update_point(desc, ec->G, ec, pbytes) ||
		sm2_z_digest_update_point(desc, ec->Q, ec, pbytes))
		return -EINVAL;

	crypto_sm3_final(desc, dgst);
	return 0;
}
EXPORT_SYMBOL(sm2_compute_z_digest);

static int _sm2_verify(struct mpi_ec_ctx *ec, MPI hash, MPI sig_r, MPI sig_s)
{
	int rc = -EINVAL;
	struct gcry_mpi_point sG, tP;
	MPI t = NULL;
	MPI x1 = NULL, y1 = NULL;

	mpi_point_init(&sG);
	mpi_point_init(&tP);
	x1 = mpi_new(0);
	y1 = mpi_new(0);
	t = mpi_new(0);

	/* r, s in [1, n-1] */
	if (mpi_cmp_ui(sig_r, 1) < 0 || mpi_cmp(sig_r, ec->n) > 0 ||
		mpi_cmp_ui(sig_s, 1) < 0 || mpi_cmp(sig_s, ec->n) > 0) {
		goto leave;
	}

	/* t = (r + s) % n, t == 0 */
	mpi_addm(t, sig_r, sig_s, ec->n);
	if (mpi_cmp_ui(t, 0) == 0)
		goto leave;

	/* sG + tP = (x1, y1) */
	rc = -EBADMSG;
	mpi_ec_mul_point(&sG, sig_s, ec->G, ec);
	mpi_ec_mul_point(&tP, t, ec->Q, ec);
	mpi_ec_add_points(&sG, &sG, &tP, ec);
	if (mpi_ec_get_affine(x1, y1, &sG, ec))
		goto leave;

	/* R = (e + x1) % n */
	mpi_addm(t, hash, x1, ec->n);

	/* check R == r */
	rc = -EKEYREJECTED;
	if (mpi_cmp(t, sig_r))
		goto leave;

	rc = 0;

leave:
	mpi_point_free_parts(&sG);
	mpi_point_free_parts(&tP);
	mpi_free(x1);
	mpi_free(y1);
	mpi_free(t);

	return rc;
}

static int sm2_verify(struct akcipher_request *req)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct mpi_ec_ctx *ec = akcipher_tfm_ctx(tfm);
	unsigned char *buffer;
	struct sm2_signature_ctx sig;
	MPI hash;
	int ret;

	if (unlikely(!ec->Q))
		return -EINVAL;

	buffer = kmalloc(req->src_len + req->dst_len, GFP_KERNEL);
	if (!buffer)
		return -ENOMEM;

	sg_pcopy_to_buffer(req->src,
		sg_nents_for_len(req->src, req->src_len + req->dst_len),
		buffer, req->src_len + req->dst_len, 0);

	sig.sig_r = NULL;
	sig.sig_s = NULL;
	ret = asn1_ber_decoder(&sm2signature_decoder, &sig,
				buffer, req->src_len);
	if (ret)
		goto error;

	ret = -ENOMEM;
	hash = mpi_read_raw_data(buffer + req->src_len, req->dst_len);
	if (!hash)
		goto error;

	ret = _sm2_verify(ec, hash, sig.sig_r, sig.sig_s);

	mpi_free(hash);
error:
	mpi_free(sig.sig_r);
	mpi_free(sig.sig_s);
	kfree(buffer);
	return ret;
}

static int sm2_set_pub_key(struct crypto_akcipher *tfm,
			const void *key, unsigned int keylen)
{
	struct mpi_ec_ctx *ec = akcipher_tfm_ctx(tfm);
	MPI a;
	int rc;

	ec->Q = mpi_point_new(0);
	if (!ec->Q)
		return -ENOMEM;

	/* include the uncompressed flag '0x04' */
	rc = -ENOMEM;
	a = mpi_read_raw_data(key, keylen);
	if (!a)
		goto error;

	mpi_normalize(a);
	rc = sm2_ecc_os2ec(ec->Q, a);
	mpi_free(a);
	if (rc)
		goto error;

	return 0;

error:
	mpi_point_release(ec->Q);
	ec->Q = NULL;
	return rc;
}

static unsigned int sm2_max_size(struct crypto_akcipher *tfm)
{
	/* Unlimited max size */
	return PAGE_SIZE;
}

static int sm2_init_tfm(struct crypto_akcipher *tfm)
{
	struct mpi_ec_ctx *ec = akcipher_tfm_ctx(tfm);

	return sm2_ec_ctx_init(ec);
}

static void sm2_exit_tfm(struct crypto_akcipher *tfm)
{
	struct mpi_ec_ctx *ec = akcipher_tfm_ctx(tfm);

	sm2_ec_ctx_deinit(ec);
}

static struct akcipher_alg sm2 = {
	.verify = sm2_verify,
	.set_pub_key = sm2_set_pub_key,
	.max_size = sm2_max_size,
	.init = sm2_init_tfm,
	.exit = sm2_exit_tfm,
	.base = {
		.cra_name = "sm2",
		.cra_driver_name = "sm2-generic",
		.cra_priority = 100,
		.cra_module = THIS_MODULE,
		.cra_ctxsize = sizeof(struct mpi_ec_ctx),
	},
};

static int sm2_init(void)
{
	return crypto_register_akcipher(&sm2);
}

static void sm2_exit(void)
{
	crypto_unregister_akcipher(&sm2);
}

subsys_initcall(sm2_init);
module_exit(sm2_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Tianjia Zhang <tianjia.zhang@linux.alibaba.com>");
MODULE_DESCRIPTION("SM2 generic algorithm");
MODULE_ALIAS_CRYPTO("sm2-generic");
back to top