Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision fba30097ae6ca68f2e397f176863fb3d3edd301c authored by Jonas on 04 October 2023, 14:52:00 UTC, committed by Jonas on 04 October 2023, 14:52:00 UTC
Add ref HAL
1 parent 384285f
  • Files
  • Changes
  • e3f3ace
  • /
  • perlinnoise.py
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:fba30097ae6ca68f2e397f176863fb3d3edd301c
directory badge Iframe embedding
swh:1:dir:e3f3acea5a45c0d74eaf0a13999938556f69e5d5
content badge Iframe embedding
swh:1:cnt:b9c2a620241249af7ffdd0a5a78b321568922d73

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
perlinnoise.py
from numba import njit
import numpy as np
from common import vec2

@njit
def hash2d(x):
	p1 = 73856093
	p2 = 19349663
	p3 = 83492791
	K = 93856263
	i = int(x[0])
	j = int(x[1])
	h1 = ((i * p1) ^ (j * p2)) % K
	h2 = ((j * p1) ^ (i * p3)) % K
	return vec2(h1,h2) / float(K) - 0.5

@njit	
def perlin_noise_grad( p ):
	x = p[0:2]
	'''returns 3D value noise (in [0])  and its derivatives (in .yz)'''
	i = np.floor(x)
	f = x-i	

	u = f*f*f*(f*(f*6.0-15.0)+10.0)
	du = 30.0*f*f*(f*(f-2.0)+1.0)
    
	ga = hash2d( i + vec2(0.0,0.0) )
	gb = hash2d( i + vec2(1.0,0.0) )
	gc = hash2d( i + vec2(0.0,1.0) )
	gd = hash2d( i + vec2(1.0,1.0) )
	#print(ga, gb,gc,gd)
    
	va = np.dot( ga, f - vec2(0.0,0.0) )
	vb = np.dot( gb, f - vec2(1.0,0.0) )
	vc = np.dot( gc, f - vec2(0.0,1.0) )
	vd = np.dot( gd, f - vec2(1.0,1.0) )

	grd =  ga + u[0]*(gb-ga) + u[1]*(gc-ga) + u[0]*u[1]*(ga-gb-gc+gd) + (vec2(u[1],u[0])*(va-vb-vc+vd) + vec2(vb,vc) - va)*du
	return grd
	# return vec3( va + u[0]*(vb-va) + u[1]*(vc-va) + u[0]*u[1]*(va-vb-vc+vd),
    #             grd[0], grd[1])
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API