Revision fc3501d411d34823fb9be248a95a0c44f945866f authored by Sven Wegener on 11 February 2009, 21:04:23 UTC, committed by Linus Torvalds on 11 February 2009, 22:25:35 UTC
We need to pass an unsigned long as the minimum, because it gets casted
to an unsigned long in the sysctl handler. If we pass an int, we'll
access four more bytes on 64bit arches, resulting in a random minimum
value.

[rientjes@google.com: fix type of `old_bytes']
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1 parent 35887b1
Raw File
au1550_ac97.c
/*
 * au1550_ac97.c  --  Sound driver for Alchemy Au1550 MIPS Internet Edge
 *                    Processor.
 *
 * Copyright 2004 Embedded Edge, LLC
 *	dan@embeddededge.com
 *
 * Mostly copied from the au1000.c driver and some from the
 * PowerMac dbdma driver.
 * We assume the processor can do memory coherent DMA.
 *
 * Ported to 2.6 by Matt Porter <mporter@kernel.crashing.org>
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
 *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
 *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
 *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *  You should have received a copy of the  GNU General Public License along
 *  with this program; if not, write  to the Free Software Foundation, Inc.,
 *  675 Mass Ave, Cambridge, MA 02139, USA.
 *
 */

#undef DEBUG

#include <linux/module.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/sound.h>
#include <linux/slab.h>
#include <linux/soundcard.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/poll.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/smp_lock.h>
#include <linux/ac97_codec.h>
#include <linux/mutex.h>

#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/hardirq.h>
#include <asm/mach-au1x00/au1xxx_psc.h>
#include <asm/mach-au1x00/au1xxx_dbdma.h>
#include <asm/mach-au1x00/au1xxx.h>

#undef OSS_DOCUMENTED_MIXER_SEMANTICS

/* misc stuff */
#define POLL_COUNT   0x50000
#define AC97_EXT_DACS (AC97_EXTID_SDAC | AC97_EXTID_CDAC | AC97_EXTID_LDAC)

/* The number of DBDMA ring descriptors to allocate.  No sense making
 * this too large....if you can't keep up with a few you aren't likely
 * to be able to with lots of them, either.
 */
#define NUM_DBDMA_DESCRIPTORS 4

#define err(format, arg...) printk(KERN_ERR format "\n" , ## arg)

/* Boot options
 * 0 = no VRA, 1 = use VRA if codec supports it
 */
static int      vra = 1;
module_param(vra, bool, 0);
MODULE_PARM_DESC(vra, "if 1 use VRA if codec supports it");

static struct au1550_state {
	/* soundcore stuff */
	int             dev_audio;

	struct ac97_codec *codec;
	unsigned        codec_base_caps; /* AC'97 reg 00h, "Reset Register" */
	unsigned        codec_ext_caps;  /* AC'97 reg 28h, "Extended Audio ID" */
	int             no_vra;		/* do not use VRA */

	spinlock_t      lock;
	struct mutex open_mutex;
	struct mutex sem;
	fmode_t          open_mode;
	wait_queue_head_t open_wait;

	struct dmabuf {
		u32		dmanr;
		unsigned        sample_rate;
		unsigned	src_factor;
		unsigned        sample_size;
		int             num_channels;
		int		dma_bytes_per_sample;
		int		user_bytes_per_sample;
		int		cnt_factor;

		void		*rawbuf;
		unsigned        buforder;
		unsigned	numfrag;
		unsigned        fragshift;
		void		*nextIn;
		void		*nextOut;
		int		count;
		unsigned        total_bytes;
		unsigned        error;
		wait_queue_head_t wait;

		/* redundant, but makes calculations easier */
		unsigned	fragsize;
		unsigned	dma_fragsize;
		unsigned	dmasize;
		unsigned	dma_qcount;

		/* OSS stuff */
		unsigned        mapped:1;
		unsigned        ready:1;
		unsigned        stopped:1;
		unsigned        ossfragshift;
		int             ossmaxfrags;
		unsigned        subdivision;
	} dma_dac, dma_adc;
} au1550_state;

static unsigned
ld2(unsigned int x)
{
	unsigned        r = 0;

	if (x >= 0x10000) {
		x >>= 16;
		r += 16;
	}
	if (x >= 0x100) {
		x >>= 8;
		r += 8;
	}
	if (x >= 0x10) {
		x >>= 4;
		r += 4;
	}
	if (x >= 4) {
		x >>= 2;
		r += 2;
	}
	if (x >= 2)
		r++;
	return r;
}

static void
au1550_delay(int msec)
{
	unsigned long   tmo;
	signed long     tmo2;

	if (in_interrupt())
		return;

	tmo = jiffies + (msec * HZ) / 1000;
	for (;;) {
		tmo2 = tmo - jiffies;
		if (tmo2 <= 0)
			break;
		schedule_timeout(tmo2);
	}
}

static u16
rdcodec(struct ac97_codec *codec, u8 addr)
{
	struct au1550_state *s = (struct au1550_state *)codec->private_data;
	unsigned long   flags;
	u32             cmd, val;
	u16             data;
	int             i;

	spin_lock_irqsave(&s->lock, flags);

	for (i = 0; i < POLL_COUNT; i++) {
		val = au_readl(PSC_AC97STAT);
		au_sync();
		if (!(val & PSC_AC97STAT_CP))
			break;
	}
	if (i == POLL_COUNT)
		err("rdcodec: codec cmd pending expired!");

	cmd = (u32)PSC_AC97CDC_INDX(addr);
	cmd |= PSC_AC97CDC_RD;	/* read command */
	au_writel(cmd, PSC_AC97CDC);
	au_sync();

	/* now wait for the data
	*/
	for (i = 0; i < POLL_COUNT; i++) {
		val = au_readl(PSC_AC97STAT);
		au_sync();
		if (!(val & PSC_AC97STAT_CP))
			break;
	}
	if (i == POLL_COUNT) {
		err("rdcodec: read poll expired!");
		data = 0;
		goto out;
	}

	/* wait for command done?
	*/
	for (i = 0; i < POLL_COUNT; i++) {
		val = au_readl(PSC_AC97EVNT);
		au_sync();
		if (val & PSC_AC97EVNT_CD)
			break;
	}
	if (i == POLL_COUNT) {
		err("rdcodec: read cmdwait expired!");
		data = 0;
		goto out;
	}

	data = au_readl(PSC_AC97CDC) & 0xffff;
	au_sync();

	/* Clear command done event.
	*/
	au_writel(PSC_AC97EVNT_CD, PSC_AC97EVNT);
	au_sync();

 out:
	spin_unlock_irqrestore(&s->lock, flags);

	return data;
}


static void
wrcodec(struct ac97_codec *codec, u8 addr, u16 data)
{
	struct au1550_state *s = (struct au1550_state *)codec->private_data;
	unsigned long   flags;
	u32             cmd, val;
	int             i;

	spin_lock_irqsave(&s->lock, flags);

	for (i = 0; i < POLL_COUNT; i++) {
		val = au_readl(PSC_AC97STAT);
		au_sync();
		if (!(val & PSC_AC97STAT_CP))
			break;
	}
	if (i == POLL_COUNT)
		err("wrcodec: codec cmd pending expired!");

	cmd = (u32)PSC_AC97CDC_INDX(addr);
	cmd |= (u32)data;
	au_writel(cmd, PSC_AC97CDC);
	au_sync();

	for (i = 0; i < POLL_COUNT; i++) {
		val = au_readl(PSC_AC97STAT);
		au_sync();
		if (!(val & PSC_AC97STAT_CP))
			break;
	}
	if (i == POLL_COUNT)
		err("wrcodec: codec cmd pending expired!");

	for (i = 0; i < POLL_COUNT; i++) {
		val = au_readl(PSC_AC97EVNT);
		au_sync();
		if (val & PSC_AC97EVNT_CD)
			break;
	}
	if (i == POLL_COUNT)
		err("wrcodec: read cmdwait expired!");

	/* Clear command done event.
	*/
	au_writel(PSC_AC97EVNT_CD, PSC_AC97EVNT);
	au_sync();

	spin_unlock_irqrestore(&s->lock, flags);
}

static void
waitcodec(struct ac97_codec *codec)
{
	u16	temp;
	u32	val;
	int	i;

	/* codec_wait is used to wait for a ready state after
	 * an AC97C_RESET.
	 */
	au1550_delay(10);

	/* first poll the CODEC_READY tag bit
	*/
	for (i = 0; i < POLL_COUNT; i++) {
		val = au_readl(PSC_AC97STAT);
		au_sync();
		if (val & PSC_AC97STAT_CR)
			break;
	}
	if (i == POLL_COUNT) {
		err("waitcodec: CODEC_READY poll expired!");
		return;
	}

	/* get AC'97 powerdown control/status register
	*/
	temp = rdcodec(codec, AC97_POWER_CONTROL);

	/* If anything is powered down, power'em up
	*/
	if (temp & 0x7f00) {
		/* Power on
		*/
		wrcodec(codec, AC97_POWER_CONTROL, 0);
		au1550_delay(100);

		/* Reread
		*/
		temp = rdcodec(codec, AC97_POWER_CONTROL);
	}

	/* Check if Codec REF,ANL,DAC,ADC ready
	*/
	if ((temp & 0x7f0f) != 0x000f)
		err("codec reg 26 status (0x%x) not ready!!", temp);
}

/* stop the ADC before calling */
static void
set_adc_rate(struct au1550_state *s, unsigned rate)
{
	struct dmabuf  *adc = &s->dma_adc;
	struct dmabuf  *dac = &s->dma_dac;
	unsigned        adc_rate, dac_rate;
	u16             ac97_extstat;

	if (s->no_vra) {
		/* calc SRC factor
		*/
		adc->src_factor = ((96000 / rate) + 1) >> 1;
		adc->sample_rate = 48000 / adc->src_factor;
		return;
	}

	adc->src_factor = 1;

	ac97_extstat = rdcodec(s->codec, AC97_EXTENDED_STATUS);

	rate = rate > 48000 ? 48000 : rate;

	/* enable VRA
	*/
	wrcodec(s->codec, AC97_EXTENDED_STATUS,
		ac97_extstat | AC97_EXTSTAT_VRA);

	/* now write the sample rate
	*/
	wrcodec(s->codec, AC97_PCM_LR_ADC_RATE, (u16) rate);

	/* read it back for actual supported rate
	*/
	adc_rate = rdcodec(s->codec, AC97_PCM_LR_ADC_RATE);

	pr_debug("set_adc_rate: set to %d Hz\n", adc_rate);

	/* some codec's don't allow unequal DAC and ADC rates, in which case
	 * writing one rate reg actually changes both.
	 */
	dac_rate = rdcodec(s->codec, AC97_PCM_FRONT_DAC_RATE);
	if (dac->num_channels > 2)
		wrcodec(s->codec, AC97_PCM_SURR_DAC_RATE, dac_rate);
	if (dac->num_channels > 4)
		wrcodec(s->codec, AC97_PCM_LFE_DAC_RATE, dac_rate);

	adc->sample_rate = adc_rate;
	dac->sample_rate = dac_rate;
}

/* stop the DAC before calling */
static void
set_dac_rate(struct au1550_state *s, unsigned rate)
{
	struct dmabuf  *dac = &s->dma_dac;
	struct dmabuf  *adc = &s->dma_adc;
	unsigned        adc_rate, dac_rate;
	u16             ac97_extstat;

	if (s->no_vra) {
		/* calc SRC factor
		*/
		dac->src_factor = ((96000 / rate) + 1) >> 1;
		dac->sample_rate = 48000 / dac->src_factor;
		return;
	}

	dac->src_factor = 1;

	ac97_extstat = rdcodec(s->codec, AC97_EXTENDED_STATUS);

	rate = rate > 48000 ? 48000 : rate;

	/* enable VRA
	*/
	wrcodec(s->codec, AC97_EXTENDED_STATUS,
		ac97_extstat | AC97_EXTSTAT_VRA);

	/* now write the sample rate
	*/
	wrcodec(s->codec, AC97_PCM_FRONT_DAC_RATE, (u16) rate);

	/* I don't support different sample rates for multichannel,
	 * so make these channels the same.
	 */
	if (dac->num_channels > 2)
		wrcodec(s->codec, AC97_PCM_SURR_DAC_RATE, (u16) rate);
	if (dac->num_channels > 4)
		wrcodec(s->codec, AC97_PCM_LFE_DAC_RATE, (u16) rate);
	/* read it back for actual supported rate
	*/
	dac_rate = rdcodec(s->codec, AC97_PCM_FRONT_DAC_RATE);

	pr_debug("set_dac_rate: set to %d Hz\n", dac_rate);

	/* some codec's don't allow unequal DAC and ADC rates, in which case
	 * writing one rate reg actually changes both.
	 */
	adc_rate = rdcodec(s->codec, AC97_PCM_LR_ADC_RATE);

	dac->sample_rate = dac_rate;
	adc->sample_rate = adc_rate;
}

static void
stop_dac(struct au1550_state *s)
{
	struct dmabuf  *db = &s->dma_dac;
	u32		stat;
	unsigned long   flags;

	if (db->stopped)
		return;

	spin_lock_irqsave(&s->lock, flags);

	au_writel(PSC_AC97PCR_TP, PSC_AC97PCR);
	au_sync();

	/* Wait for Transmit Busy to show disabled.
	*/
	do {
		stat = au_readl(PSC_AC97STAT);
		au_sync();
	} while ((stat & PSC_AC97STAT_TB) != 0);

	au1xxx_dbdma_reset(db->dmanr);

	db->stopped = 1;

	spin_unlock_irqrestore(&s->lock, flags);
}

static void
stop_adc(struct au1550_state *s)
{
	struct dmabuf  *db = &s->dma_adc;
	unsigned long   flags;
	u32		stat;

	if (db->stopped)
		return;

	spin_lock_irqsave(&s->lock, flags);

	au_writel(PSC_AC97PCR_RP, PSC_AC97PCR);
	au_sync();

	/* Wait for Receive Busy to show disabled.
	*/
	do {
		stat = au_readl(PSC_AC97STAT);
		au_sync();
	} while ((stat & PSC_AC97STAT_RB) != 0);

	au1xxx_dbdma_reset(db->dmanr);

	db->stopped = 1;

	spin_unlock_irqrestore(&s->lock, flags);
}


static void
set_xmit_slots(int num_channels)
{
	u32	ac97_config, stat;

	ac97_config = au_readl(PSC_AC97CFG);
	au_sync();
	ac97_config &= ~(PSC_AC97CFG_TXSLOT_MASK | PSC_AC97CFG_DE_ENABLE);
	au_writel(ac97_config, PSC_AC97CFG);
	au_sync();

	switch (num_channels) {
	case 6:		/* stereo with surround and center/LFE,
			 * slots 3,4,6,7,8,9
			 */
		ac97_config |= PSC_AC97CFG_TXSLOT_ENA(6);
		ac97_config |= PSC_AC97CFG_TXSLOT_ENA(9);

	case 4:		/* stereo with surround, slots 3,4,7,8 */
		ac97_config |= PSC_AC97CFG_TXSLOT_ENA(7);
		ac97_config |= PSC_AC97CFG_TXSLOT_ENA(8);

	case 2:		/* stereo, slots 3,4 */
	case 1:		/* mono */
		ac97_config |= PSC_AC97CFG_TXSLOT_ENA(3);
		ac97_config |= PSC_AC97CFG_TXSLOT_ENA(4);
	}

	au_writel(ac97_config, PSC_AC97CFG);
	au_sync();

	ac97_config |= PSC_AC97CFG_DE_ENABLE;
	au_writel(ac97_config, PSC_AC97CFG);
	au_sync();

	/* Wait for Device ready.
	*/
	do {
		stat = au_readl(PSC_AC97STAT);
		au_sync();
	} while ((stat & PSC_AC97STAT_DR) == 0);
}

static void
set_recv_slots(int num_channels)
{
	u32	ac97_config, stat;

	ac97_config = au_readl(PSC_AC97CFG);
	au_sync();
	ac97_config &= ~(PSC_AC97CFG_RXSLOT_MASK | PSC_AC97CFG_DE_ENABLE);
	au_writel(ac97_config, PSC_AC97CFG);
	au_sync();

	/* Always enable slots 3 and 4 (stereo). Slot 6 is
	 * optional Mic ADC, which we don't support yet.
	 */
	ac97_config |= PSC_AC97CFG_RXSLOT_ENA(3);
	ac97_config |= PSC_AC97CFG_RXSLOT_ENA(4);

	au_writel(ac97_config, PSC_AC97CFG);
	au_sync();

	ac97_config |= PSC_AC97CFG_DE_ENABLE;
	au_writel(ac97_config, PSC_AC97CFG);
	au_sync();

	/* Wait for Device ready.
	*/
	do {
		stat = au_readl(PSC_AC97STAT);
		au_sync();
	} while ((stat & PSC_AC97STAT_DR) == 0);
}

/* Hold spinlock for both start_dac() and start_adc() calls */
static void
start_dac(struct au1550_state *s)
{
	struct dmabuf  *db = &s->dma_dac;

	if (!db->stopped)
		return;

	set_xmit_slots(db->num_channels);
	au_writel(PSC_AC97PCR_TC, PSC_AC97PCR);
	au_sync();
	au_writel(PSC_AC97PCR_TS, PSC_AC97PCR);
	au_sync();

	au1xxx_dbdma_start(db->dmanr);

	db->stopped = 0;
}

static void
start_adc(struct au1550_state *s)
{
	struct dmabuf  *db = &s->dma_adc;
	int	i;

	if (!db->stopped)
		return;

	/* Put two buffers on the ring to get things started.
	*/
	for (i=0; i<2; i++) {
		au1xxx_dbdma_put_dest(db->dmanr, db->nextIn, db->dma_fragsize);

		db->nextIn += db->dma_fragsize;
		if (db->nextIn >= db->rawbuf + db->dmasize)
			db->nextIn -= db->dmasize;
	}

	set_recv_slots(db->num_channels);
	au1xxx_dbdma_start(db->dmanr);
	au_writel(PSC_AC97PCR_RC, PSC_AC97PCR);
	au_sync();
	au_writel(PSC_AC97PCR_RS, PSC_AC97PCR);
	au_sync();

	db->stopped = 0;
}

static int
prog_dmabuf(struct au1550_state *s, struct dmabuf *db)
{
	unsigned user_bytes_per_sec;
	unsigned        bufs;
	unsigned        rate = db->sample_rate;

	if (!db->rawbuf) {
		db->ready = db->mapped = 0;
		db->buforder = 5;	/* 32 * PAGE_SIZE */
		db->rawbuf = kmalloc((PAGE_SIZE << db->buforder), GFP_KERNEL);
		if (!db->rawbuf)
			return -ENOMEM;
	}

	db->cnt_factor = 1;
	if (db->sample_size == 8)
		db->cnt_factor *= 2;
	if (db->num_channels == 1)
		db->cnt_factor *= 2;
	db->cnt_factor *= db->src_factor;

	db->count = 0;
	db->dma_qcount = 0;
	db->nextIn = db->nextOut = db->rawbuf;

	db->user_bytes_per_sample = (db->sample_size>>3) * db->num_channels;
	db->dma_bytes_per_sample = 2 * ((db->num_channels == 1) ?
					2 : db->num_channels);

	user_bytes_per_sec = rate * db->user_bytes_per_sample;
	bufs = PAGE_SIZE << db->buforder;
	if (db->ossfragshift) {
		if ((1000 << db->ossfragshift) < user_bytes_per_sec)
			db->fragshift = ld2(user_bytes_per_sec/1000);
		else
			db->fragshift = db->ossfragshift;
	} else {
		db->fragshift = ld2(user_bytes_per_sec / 100 /
				    (db->subdivision ? db->subdivision : 1));
		if (db->fragshift < 3)
			db->fragshift = 3;
	}

	db->fragsize = 1 << db->fragshift;
	db->dma_fragsize = db->fragsize * db->cnt_factor;
	db->numfrag = bufs / db->dma_fragsize;

	while (db->numfrag < 4 && db->fragshift > 3) {
		db->fragshift--;
		db->fragsize = 1 << db->fragshift;
		db->dma_fragsize = db->fragsize * db->cnt_factor;
		db->numfrag = bufs / db->dma_fragsize;
	}

	if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag)
		db->numfrag = db->ossmaxfrags;

	db->dmasize = db->dma_fragsize * db->numfrag;
	memset(db->rawbuf, 0, bufs);

	pr_debug("prog_dmabuf: rate=%d, samplesize=%d, channels=%d\n",
	    rate, db->sample_size, db->num_channels);
	pr_debug("prog_dmabuf: fragsize=%d, cnt_factor=%d, dma_fragsize=%d\n",
	    db->fragsize, db->cnt_factor, db->dma_fragsize);
	pr_debug("prog_dmabuf: numfrag=%d, dmasize=%d\n", db->numfrag, db->dmasize);

	db->ready = 1;
	return 0;
}

static int
prog_dmabuf_adc(struct au1550_state *s)
{
	stop_adc(s);
	return prog_dmabuf(s, &s->dma_adc);

}

static int
prog_dmabuf_dac(struct au1550_state *s)
{
	stop_dac(s);
	return prog_dmabuf(s, &s->dma_dac);
}


static void dac_dma_interrupt(int irq, void *dev_id)
{
	struct au1550_state *s = (struct au1550_state *) dev_id;
	struct dmabuf  *db = &s->dma_dac;
	u32	ac97c_stat;

	spin_lock(&s->lock);

	ac97c_stat = au_readl(PSC_AC97STAT);
	if (ac97c_stat & (AC97C_XU | AC97C_XO | AC97C_TE))
		pr_debug("AC97C status = 0x%08x\n", ac97c_stat);
	db->dma_qcount--;

	if (db->count >= db->fragsize) {
		if (au1xxx_dbdma_put_source(db->dmanr, db->nextOut,
							db->fragsize) == 0) {
			err("qcount < 2 and no ring room!");
		}
		db->nextOut += db->fragsize;
		if (db->nextOut >= db->rawbuf + db->dmasize)
			db->nextOut -= db->dmasize;
		db->count -= db->fragsize;
		db->total_bytes += db->dma_fragsize;
		db->dma_qcount++;
	}

	/* wake up anybody listening */
	if (waitqueue_active(&db->wait))
		wake_up(&db->wait);

	spin_unlock(&s->lock);
}


static void adc_dma_interrupt(int irq, void *dev_id)
{
	struct	au1550_state *s = (struct au1550_state *)dev_id;
	struct	dmabuf  *dp = &s->dma_adc;
	u32	obytes;
	char	*obuf;

	spin_lock(&s->lock);

	/* Pull the buffer from the dma queue.
	*/
	au1xxx_dbdma_get_dest(dp->dmanr, (void *)(&obuf), &obytes);

	if ((dp->count + obytes) > dp->dmasize) {
		/* Overrun. Stop ADC and log the error
		*/
		spin_unlock(&s->lock);
		stop_adc(s);
		dp->error++;
		err("adc overrun");
		return;
	}

	/* Put a new empty buffer on the destination DMA.
	*/
	au1xxx_dbdma_put_dest(dp->dmanr, dp->nextIn, dp->dma_fragsize);

	dp->nextIn += dp->dma_fragsize;
	if (dp->nextIn >= dp->rawbuf + dp->dmasize)
		dp->nextIn -= dp->dmasize;

	dp->count += obytes;
	dp->total_bytes += obytes;

	/* wake up anybody listening
	*/
	if (waitqueue_active(&dp->wait))
		wake_up(&dp->wait);

	spin_unlock(&s->lock);
}

static loff_t
au1550_llseek(struct file *file, loff_t offset, int origin)
{
	return -ESPIPE;
}


static int
au1550_open_mixdev(struct inode *inode, struct file *file)
{
	file->private_data = &au1550_state;
	return 0;
}

static int
au1550_release_mixdev(struct inode *inode, struct file *file)
{
	return 0;
}

static int
mixdev_ioctl(struct ac97_codec *codec, unsigned int cmd,
                        unsigned long arg)
{
	return codec->mixer_ioctl(codec, cmd, arg);
}

static int
au1550_ioctl_mixdev(struct inode *inode, struct file *file,
			       unsigned int cmd, unsigned long arg)
{
	struct au1550_state *s = (struct au1550_state *)file->private_data;
	struct ac97_codec *codec = s->codec;

	return mixdev_ioctl(codec, cmd, arg);
}

static /*const */ struct file_operations au1550_mixer_fops = {
	owner:THIS_MODULE,
	llseek:au1550_llseek,
	ioctl:au1550_ioctl_mixdev,
	open:au1550_open_mixdev,
	release:au1550_release_mixdev,
};

static int
drain_dac(struct au1550_state *s, int nonblock)
{
	unsigned long   flags;
	int             count, tmo;

	if (s->dma_dac.mapped || !s->dma_dac.ready || s->dma_dac.stopped)
		return 0;

	for (;;) {
		spin_lock_irqsave(&s->lock, flags);
		count = s->dma_dac.count;
		spin_unlock_irqrestore(&s->lock, flags);
		if (count <= s->dma_dac.fragsize)
			break;
		if (signal_pending(current))
			break;
		if (nonblock)
			return -EBUSY;
		tmo = 1000 * count / (s->no_vra ?
				      48000 : s->dma_dac.sample_rate);
		tmo /= s->dma_dac.dma_bytes_per_sample;
		au1550_delay(tmo);
	}
	if (signal_pending(current))
		return -ERESTARTSYS;
	return 0;
}

static inline u8 S16_TO_U8(s16 ch)
{
	return (u8) (ch >> 8) + 0x80;
}
static inline s16 U8_TO_S16(u8 ch)
{
	return (s16) (ch - 0x80) << 8;
}

/*
 * Translates user samples to dma buffer suitable for AC'97 DAC data:
 *     If mono, copy left channel to right channel in dma buffer.
 *     If 8 bit samples, cvt to 16-bit before writing to dma buffer.
 *     If interpolating (no VRA), duplicate every audio frame src_factor times.
 */
static int
translate_from_user(struct dmabuf *db, char* dmabuf, char* userbuf,
							       int dmacount)
{
	int             sample, i;
	int             interp_bytes_per_sample;
	int             num_samples;
	int             mono = (db->num_channels == 1);
	char            usersample[12];
	s16             ch, dmasample[6];

	if (db->sample_size == 16 && !mono && db->src_factor == 1) {
		/* no translation necessary, just copy
		*/
		if (copy_from_user(dmabuf, userbuf, dmacount))
			return -EFAULT;
		return dmacount;
	}

	interp_bytes_per_sample = db->dma_bytes_per_sample * db->src_factor;
	num_samples = dmacount / interp_bytes_per_sample;

	for (sample = 0; sample < num_samples; sample++) {
		if (copy_from_user(usersample, userbuf,
				   db->user_bytes_per_sample)) {
			return -EFAULT;
		}

		for (i = 0; i < db->num_channels; i++) {
			if (db->sample_size == 8)
				ch = U8_TO_S16(usersample[i]);
			else
				ch = *((s16 *) (&usersample[i * 2]));
			dmasample[i] = ch;
			if (mono)
				dmasample[i + 1] = ch;	/* right channel */
		}

		/* duplicate every audio frame src_factor times
		*/
		for (i = 0; i < db->src_factor; i++)
			memcpy(dmabuf, dmasample, db->dma_bytes_per_sample);

		userbuf += db->user_bytes_per_sample;
		dmabuf += interp_bytes_per_sample;
	}

	return num_samples * interp_bytes_per_sample;
}

/*
 * Translates AC'97 ADC samples to user buffer:
 *     If mono, send only left channel to user buffer.
 *     If 8 bit samples, cvt from 16 to 8 bit before writing to user buffer.
 *     If decimating (no VRA), skip over src_factor audio frames.
 */
static int
translate_to_user(struct dmabuf *db, char* userbuf, char* dmabuf,
							     int dmacount)
{
	int             sample, i;
	int             interp_bytes_per_sample;
	int             num_samples;
	int             mono = (db->num_channels == 1);
	char            usersample[12];

	if (db->sample_size == 16 && !mono && db->src_factor == 1) {
		/* no translation necessary, just copy
		*/
		if (copy_to_user(userbuf, dmabuf, dmacount))
			return -EFAULT;
		return dmacount;
	}

	interp_bytes_per_sample = db->dma_bytes_per_sample * db->src_factor;
	num_samples = dmacount / interp_bytes_per_sample;

	for (sample = 0; sample < num_samples; sample++) {
		for (i = 0; i < db->num_channels; i++) {
			if (db->sample_size == 8)
				usersample[i] =
					S16_TO_U8(*((s16 *) (&dmabuf[i * 2])));
			else
				*((s16 *) (&usersample[i * 2])) =
					*((s16 *) (&dmabuf[i * 2]));
		}

		if (copy_to_user(userbuf, usersample,
				 db->user_bytes_per_sample)) {
			return -EFAULT;
		}

		userbuf += db->user_bytes_per_sample;
		dmabuf += interp_bytes_per_sample;
	}

	return num_samples * interp_bytes_per_sample;
}

/*
 * Copy audio data to/from user buffer from/to dma buffer, taking care
 * that we wrap when reading/writing the dma buffer. Returns actual byte
 * count written to or read from the dma buffer.
 */
static int
copy_dmabuf_user(struct dmabuf *db, char* userbuf, int count, int to_user)
{
	char           *bufptr = to_user ? db->nextOut : db->nextIn;
	char           *bufend = db->rawbuf + db->dmasize;
	int             cnt, ret;

	if (bufptr + count > bufend) {
		int             partial = (int) (bufend - bufptr);
		if (to_user) {
			if ((cnt = translate_to_user(db, userbuf,
						     bufptr, partial)) < 0)
				return cnt;
			ret = cnt;
			if ((cnt = translate_to_user(db, userbuf + partial,
						     db->rawbuf,
						     count - partial)) < 0)
				return cnt;
			ret += cnt;
		} else {
			if ((cnt = translate_from_user(db, bufptr, userbuf,
						       partial)) < 0)
				return cnt;
			ret = cnt;
			if ((cnt = translate_from_user(db, db->rawbuf,
						       userbuf + partial,
						       count - partial)) < 0)
				return cnt;
			ret += cnt;
		}
	} else {
		if (to_user)
			ret = translate_to_user(db, userbuf, bufptr, count);
		else
			ret = translate_from_user(db, bufptr, userbuf, count);
	}

	return ret;
}


static ssize_t
au1550_read(struct file *file, char *buffer, size_t count, loff_t *ppos)
{
	struct au1550_state *s = (struct au1550_state *)file->private_data;
	struct dmabuf  *db = &s->dma_adc;
	DECLARE_WAITQUEUE(wait, current);
	ssize_t         ret;
	unsigned long   flags;
	int             cnt, usercnt, avail;

	if (db->mapped)
		return -ENXIO;
	if (!access_ok(VERIFY_WRITE, buffer, count))
		return -EFAULT;
	ret = 0;

	count *= db->cnt_factor;

	mutex_lock(&s->sem);
	add_wait_queue(&db->wait, &wait);

	while (count > 0) {
		/* wait for samples in ADC dma buffer
		*/
		do {
			spin_lock_irqsave(&s->lock, flags);
			if (db->stopped)
				start_adc(s);
			avail = db->count;
			if (avail <= 0)
				__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irqrestore(&s->lock, flags);
			if (avail <= 0) {
				if (file->f_flags & O_NONBLOCK) {
					if (!ret)
						ret = -EAGAIN;
					goto out;
				}
				mutex_unlock(&s->sem);
				schedule();
				if (signal_pending(current)) {
					if (!ret)
						ret = -ERESTARTSYS;
					goto out2;
				}
				mutex_lock(&s->sem);
			}
		} while (avail <= 0);

		/* copy from nextOut to user
		*/
		if ((cnt = copy_dmabuf_user(db, buffer,
					    count > avail ?
					    avail : count, 1)) < 0) {
			if (!ret)
				ret = -EFAULT;
			goto out;
		}

		spin_lock_irqsave(&s->lock, flags);
		db->count -= cnt;
		db->nextOut += cnt;
		if (db->nextOut >= db->rawbuf + db->dmasize)
			db->nextOut -= db->dmasize;
		spin_unlock_irqrestore(&s->lock, flags);

		count -= cnt;
		usercnt = cnt / db->cnt_factor;
		buffer += usercnt;
		ret += usercnt;
	}			/* while (count > 0) */

out:
	mutex_unlock(&s->sem);
out2:
	remove_wait_queue(&db->wait, &wait);
	set_current_state(TASK_RUNNING);
	return ret;
}

static ssize_t
au1550_write(struct file *file, const char *buffer, size_t count, loff_t * ppos)
{
	struct au1550_state *s = (struct au1550_state *)file->private_data;
	struct dmabuf  *db = &s->dma_dac;
	DECLARE_WAITQUEUE(wait, current);
	ssize_t         ret = 0;
	unsigned long   flags;
	int             cnt, usercnt, avail;

	pr_debug("write: count=%d\n", count);

	if (db->mapped)
		return -ENXIO;
	if (!access_ok(VERIFY_READ, buffer, count))
		return -EFAULT;

	count *= db->cnt_factor;

	mutex_lock(&s->sem);
	add_wait_queue(&db->wait, &wait);

	while (count > 0) {
		/* wait for space in playback buffer
		*/
		do {
			spin_lock_irqsave(&s->lock, flags);
			avail = (int) db->dmasize - db->count;
			if (avail <= 0)
				__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irqrestore(&s->lock, flags);
			if (avail <= 0) {
				if (file->f_flags & O_NONBLOCK) {
					if (!ret)
						ret = -EAGAIN;
					goto out;
				}
				mutex_unlock(&s->sem);
				schedule();
				if (signal_pending(current)) {
					if (!ret)
						ret = -ERESTARTSYS;
					goto out2;
				}
				mutex_lock(&s->sem);
			}
		} while (avail <= 0);

		/* copy from user to nextIn
		*/
		if ((cnt = copy_dmabuf_user(db, (char *) buffer,
					    count > avail ?
					    avail : count, 0)) < 0) {
			if (!ret)
				ret = -EFAULT;
			goto out;
		}

		spin_lock_irqsave(&s->lock, flags);
		db->count += cnt;
		db->nextIn += cnt;
		if (db->nextIn >= db->rawbuf + db->dmasize)
			db->nextIn -= db->dmasize;

		/* If the data is available, we want to keep two buffers
		 * on the dma queue.  If the queue count reaches zero,
		 * we know the dma has stopped.
		 */
		while ((db->dma_qcount < 2) && (db->count >= db->fragsize)) {
			if (au1xxx_dbdma_put_source(db->dmanr, db->nextOut,
							db->fragsize) == 0) {
				err("qcount < 2 and no ring room!");
			}
			db->nextOut += db->fragsize;
			if (db->nextOut >= db->rawbuf + db->dmasize)
				db->nextOut -= db->dmasize;
			db->total_bytes += db->dma_fragsize;
			if (db->dma_qcount == 0)
				start_dac(s);
			db->dma_qcount++;
		}
		spin_unlock_irqrestore(&s->lock, flags);

		count -= cnt;
		usercnt = cnt / db->cnt_factor;
		buffer += usercnt;
		ret += usercnt;
	}			/* while (count > 0) */

out:
	mutex_unlock(&s->sem);
out2:
	remove_wait_queue(&db->wait, &wait);
	set_current_state(TASK_RUNNING);
	return ret;
}


/* No kernel lock - we have our own spinlock */
static unsigned int
au1550_poll(struct file *file, struct poll_table_struct *wait)
{
	struct au1550_state *s = (struct au1550_state *)file->private_data;
	unsigned long   flags;
	unsigned int    mask = 0;

	if (file->f_mode & FMODE_WRITE) {
		if (!s->dma_dac.ready)
			return 0;
		poll_wait(file, &s->dma_dac.wait, wait);
	}
	if (file->f_mode & FMODE_READ) {
		if (!s->dma_adc.ready)
			return 0;
		poll_wait(file, &s->dma_adc.wait, wait);
	}

	spin_lock_irqsave(&s->lock, flags);

	if (file->f_mode & FMODE_READ) {
		if (s->dma_adc.count >= (signed)s->dma_adc.dma_fragsize)
			mask |= POLLIN | POLLRDNORM;
	}
	if (file->f_mode & FMODE_WRITE) {
		if (s->dma_dac.mapped) {
			if (s->dma_dac.count >=
			    (signed)s->dma_dac.dma_fragsize)
				mask |= POLLOUT | POLLWRNORM;
		} else {
			if ((signed) s->dma_dac.dmasize >=
			    s->dma_dac.count + (signed)s->dma_dac.dma_fragsize)
				mask |= POLLOUT | POLLWRNORM;
		}
	}
	spin_unlock_irqrestore(&s->lock, flags);
	return mask;
}

static int
au1550_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct au1550_state *s = (struct au1550_state *)file->private_data;
	struct dmabuf  *db;
	unsigned long   size;
	int ret = 0;

	lock_kernel();
	mutex_lock(&s->sem);
	if (vma->vm_flags & VM_WRITE)
		db = &s->dma_dac;
	else if (vma->vm_flags & VM_READ)
		db = &s->dma_adc;
	else {
		ret = -EINVAL;
		goto out;
	}
	if (vma->vm_pgoff != 0) {
		ret = -EINVAL;
		goto out;
	}
	size = vma->vm_end - vma->vm_start;
	if (size > (PAGE_SIZE << db->buforder)) {
		ret = -EINVAL;
		goto out;
	}
	if (remap_pfn_range(vma, vma->vm_start, page_to_pfn(virt_to_page(db->rawbuf)),
			     size, vma->vm_page_prot)) {
		ret = -EAGAIN;
		goto out;
	}
	vma->vm_flags &= ~VM_IO;
	db->mapped = 1;
out:
	mutex_unlock(&s->sem);
	unlock_kernel();
	return ret;
}

#ifdef DEBUG
static struct ioctl_str_t {
	unsigned int    cmd;
	const char     *str;
} ioctl_str[] = {
	{SNDCTL_DSP_RESET, "SNDCTL_DSP_RESET"},
	{SNDCTL_DSP_SYNC, "SNDCTL_DSP_SYNC"},
	{SNDCTL_DSP_SPEED, "SNDCTL_DSP_SPEED"},
	{SNDCTL_DSP_STEREO, "SNDCTL_DSP_STEREO"},
	{SNDCTL_DSP_GETBLKSIZE, "SNDCTL_DSP_GETBLKSIZE"},
	{SNDCTL_DSP_SAMPLESIZE, "SNDCTL_DSP_SAMPLESIZE"},
	{SNDCTL_DSP_CHANNELS, "SNDCTL_DSP_CHANNELS"},
	{SOUND_PCM_WRITE_CHANNELS, "SOUND_PCM_WRITE_CHANNELS"},
	{SOUND_PCM_WRITE_FILTER, "SOUND_PCM_WRITE_FILTER"},
	{SNDCTL_DSP_POST, "SNDCTL_DSP_POST"},
	{SNDCTL_DSP_SUBDIVIDE, "SNDCTL_DSP_SUBDIVIDE"},
	{SNDCTL_DSP_SETFRAGMENT, "SNDCTL_DSP_SETFRAGMENT"},
	{SNDCTL_DSP_GETFMTS, "SNDCTL_DSP_GETFMTS"},
	{SNDCTL_DSP_SETFMT, "SNDCTL_DSP_SETFMT"},
	{SNDCTL_DSP_GETOSPACE, "SNDCTL_DSP_GETOSPACE"},
	{SNDCTL_DSP_GETISPACE, "SNDCTL_DSP_GETISPACE"},
	{SNDCTL_DSP_NONBLOCK, "SNDCTL_DSP_NONBLOCK"},
	{SNDCTL_DSP_GETCAPS, "SNDCTL_DSP_GETCAPS"},
	{SNDCTL_DSP_GETTRIGGER, "SNDCTL_DSP_GETTRIGGER"},
	{SNDCTL_DSP_SETTRIGGER, "SNDCTL_DSP_SETTRIGGER"},
	{SNDCTL_DSP_GETIPTR, "SNDCTL_DSP_GETIPTR"},
	{SNDCTL_DSP_GETOPTR, "SNDCTL_DSP_GETOPTR"},
	{SNDCTL_DSP_MAPINBUF, "SNDCTL_DSP_MAPINBUF"},
	{SNDCTL_DSP_MAPOUTBUF, "SNDCTL_DSP_MAPOUTBUF"},
	{SNDCTL_DSP_SETSYNCRO, "SNDCTL_DSP_SETSYNCRO"},
	{SNDCTL_DSP_SETDUPLEX, "SNDCTL_DSP_SETDUPLEX"},
	{SNDCTL_DSP_GETODELAY, "SNDCTL_DSP_GETODELAY"},
	{SNDCTL_DSP_GETCHANNELMASK, "SNDCTL_DSP_GETCHANNELMASK"},
	{SNDCTL_DSP_BIND_CHANNEL, "SNDCTL_DSP_BIND_CHANNEL"},
	{OSS_GETVERSION, "OSS_GETVERSION"},
	{SOUND_PCM_READ_RATE, "SOUND_PCM_READ_RATE"},
	{SOUND_PCM_READ_CHANNELS, "SOUND_PCM_READ_CHANNELS"},
	{SOUND_PCM_READ_BITS, "SOUND_PCM_READ_BITS"},
	{SOUND_PCM_READ_FILTER, "SOUND_PCM_READ_FILTER"}
};
#endif

static int
dma_count_done(struct dmabuf *db)
{
	if (db->stopped)
		return 0;

	return db->dma_fragsize - au1xxx_get_dma_residue(db->dmanr);
}


static int
au1550_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
							unsigned long arg)
{
	struct au1550_state *s = (struct au1550_state *)file->private_data;
	unsigned long   flags;
	audio_buf_info  abinfo;
	count_info      cinfo;
	int             count;
	int             val, mapped, ret, diff;

	mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) ||
		((file->f_mode & FMODE_READ) && s->dma_adc.mapped);

#ifdef DEBUG
	for (count = 0; count < ARRAY_SIZE(ioctl_str); count++) {
		if (ioctl_str[count].cmd == cmd)
			break;
	}
	if (count < ARRAY_SIZE(ioctl_str))
		pr_debug("ioctl %s, arg=0x%lxn", ioctl_str[count].str, arg);
	else
		pr_debug("ioctl 0x%x unknown, arg=0x%lx\n", cmd, arg);
#endif

	switch (cmd) {
	case OSS_GETVERSION:
		return put_user(SOUND_VERSION, (int *) arg);

	case SNDCTL_DSP_SYNC:
		if (file->f_mode & FMODE_WRITE)
			return drain_dac(s, file->f_flags & O_NONBLOCK);
		return 0;

	case SNDCTL_DSP_SETDUPLEX:
		return 0;

	case SNDCTL_DSP_GETCAPS:
		return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME |
				DSP_CAP_TRIGGER | DSP_CAP_MMAP, (int *)arg);

	case SNDCTL_DSP_RESET:
		if (file->f_mode & FMODE_WRITE) {
			stop_dac(s);
			synchronize_irq();
			s->dma_dac.count = s->dma_dac.total_bytes = 0;
			s->dma_dac.nextIn = s->dma_dac.nextOut =
				s->dma_dac.rawbuf;
		}
		if (file->f_mode & FMODE_READ) {
			stop_adc(s);
			synchronize_irq();
			s->dma_adc.count = s->dma_adc.total_bytes = 0;
			s->dma_adc.nextIn = s->dma_adc.nextOut =
				s->dma_adc.rawbuf;
		}
		return 0;

	case SNDCTL_DSP_SPEED:
		if (get_user(val, (int *) arg))
			return -EFAULT;
		if (val >= 0) {
			if (file->f_mode & FMODE_READ) {
				stop_adc(s);
				set_adc_rate(s, val);
			}
			if (file->f_mode & FMODE_WRITE) {
				stop_dac(s);
				set_dac_rate(s, val);
			}
			if (s->open_mode & FMODE_READ)
				if ((ret = prog_dmabuf_adc(s)))
					return ret;
			if (s->open_mode & FMODE_WRITE)
				if ((ret = prog_dmabuf_dac(s)))
					return ret;
		}
		return put_user((file->f_mode & FMODE_READ) ?
				s->dma_adc.sample_rate :
				s->dma_dac.sample_rate,
				(int *)arg);

	case SNDCTL_DSP_STEREO:
		if (get_user(val, (int *) arg))
			return -EFAULT;
		if (file->f_mode & FMODE_READ) {
			stop_adc(s);
			s->dma_adc.num_channels = val ? 2 : 1;
			if ((ret = prog_dmabuf_adc(s)))
				return ret;
		}
		if (file->f_mode & FMODE_WRITE) {
			stop_dac(s);
			s->dma_dac.num_channels = val ? 2 : 1;
			if (s->codec_ext_caps & AC97_EXT_DACS) {
				/* disable surround and center/lfe in AC'97
				*/
				u16 ext_stat = rdcodec(s->codec,
						       AC97_EXTENDED_STATUS);
				wrcodec(s->codec, AC97_EXTENDED_STATUS,
					ext_stat | (AC97_EXTSTAT_PRI |
						    AC97_EXTSTAT_PRJ |
						    AC97_EXTSTAT_PRK));
			}
			if ((ret = prog_dmabuf_dac(s)))
				return ret;
		}
		return 0;

	case SNDCTL_DSP_CHANNELS:
		if (get_user(val, (int *) arg))
			return -EFAULT;
		if (val != 0) {
			if (file->f_mode & FMODE_READ) {
				if (val < 0 || val > 2)
					return -EINVAL;
				stop_adc(s);
				s->dma_adc.num_channels = val;
				if ((ret = prog_dmabuf_adc(s)))
					return ret;
			}
			if (file->f_mode & FMODE_WRITE) {
				switch (val) {
				case 1:
				case 2:
					break;
				case 3:
				case 5:
					return -EINVAL;
				case 4:
					if (!(s->codec_ext_caps &
					      AC97_EXTID_SDAC))
						return -EINVAL;
					break;
				case 6:
					if ((s->codec_ext_caps &
					     AC97_EXT_DACS) != AC97_EXT_DACS)
						return -EINVAL;
					break;
				default:
					return -EINVAL;
				}

				stop_dac(s);
				if (val <= 2 &&
				    (s->codec_ext_caps & AC97_EXT_DACS)) {
					/* disable surround and center/lfe
					 * channels in AC'97
					 */
					u16             ext_stat =
						rdcodec(s->codec,
							AC97_EXTENDED_STATUS);
					wrcodec(s->codec,
						AC97_EXTENDED_STATUS,
						ext_stat | (AC97_EXTSTAT_PRI |
							    AC97_EXTSTAT_PRJ |
							    AC97_EXTSTAT_PRK));
				} else if (val >= 4) {
					/* enable surround, center/lfe
					 * channels in AC'97
					 */
					u16             ext_stat =
						rdcodec(s->codec,
							AC97_EXTENDED_STATUS);
					ext_stat &= ~AC97_EXTSTAT_PRJ;
					if (val == 6)
						ext_stat &=
							~(AC97_EXTSTAT_PRI |
							  AC97_EXTSTAT_PRK);
					wrcodec(s->codec,
						AC97_EXTENDED_STATUS,
						ext_stat);
				}

				s->dma_dac.num_channels = val;
				if ((ret = prog_dmabuf_dac(s)))
					return ret;
			}
		}
		return put_user(val, (int *) arg);

	case SNDCTL_DSP_GETFMTS:	/* Returns a mask */
		return put_user(AFMT_S16_LE | AFMT_U8, (int *) arg);

	case SNDCTL_DSP_SETFMT:	/* Selects ONE fmt */
		if (get_user(val, (int *) arg))
			return -EFAULT;
		if (val != AFMT_QUERY) {
			if (file->f_mode & FMODE_READ) {
				stop_adc(s);
				if (val == AFMT_S16_LE)
					s->dma_adc.sample_size = 16;
				else {
					val = AFMT_U8;
					s->dma_adc.sample_size = 8;
				}
				if ((ret = prog_dmabuf_adc(s)))
					return ret;
			}
			if (file->f_mode & FMODE_WRITE) {
				stop_dac(s);
				if (val == AFMT_S16_LE)
					s->dma_dac.sample_size = 16;
				else {
					val = AFMT_U8;
					s->dma_dac.sample_size = 8;
				}
				if ((ret = prog_dmabuf_dac(s)))
					return ret;
			}
		} else {
			if (file->f_mode & FMODE_READ)
				val = (s->dma_adc.sample_size == 16) ?
					AFMT_S16_LE : AFMT_U8;
			else
				val = (s->dma_dac.sample_size == 16) ?
					AFMT_S16_LE : AFMT_U8;
		}
		return put_user(val, (int *) arg);

	case SNDCTL_DSP_POST:
		return 0;

	case SNDCTL_DSP_GETTRIGGER:
		val = 0;
		spin_lock_irqsave(&s->lock, flags);
		if (file->f_mode & FMODE_READ && !s->dma_adc.stopped)
			val |= PCM_ENABLE_INPUT;
		if (file->f_mode & FMODE_WRITE && !s->dma_dac.stopped)
			val |= PCM_ENABLE_OUTPUT;
		spin_unlock_irqrestore(&s->lock, flags);
		return put_user(val, (int *) arg);

	case SNDCTL_DSP_SETTRIGGER:
		if (get_user(val, (int *) arg))
			return -EFAULT;
		if (file->f_mode & FMODE_READ) {
			if (val & PCM_ENABLE_INPUT) {
				spin_lock_irqsave(&s->lock, flags);
				start_adc(s);
				spin_unlock_irqrestore(&s->lock, flags);
			} else
				stop_adc(s);
		}
		if (file->f_mode & FMODE_WRITE) {
			if (val & PCM_ENABLE_OUTPUT) {
				spin_lock_irqsave(&s->lock, flags);
				start_dac(s);
				spin_unlock_irqrestore(&s->lock, flags);
			} else
				stop_dac(s);
		}
		return 0;

	case SNDCTL_DSP_GETOSPACE:
		if (!(file->f_mode & FMODE_WRITE))
			return -EINVAL;
		abinfo.fragsize = s->dma_dac.fragsize;
		spin_lock_irqsave(&s->lock, flags);
		count = s->dma_dac.count;
		count -= dma_count_done(&s->dma_dac);
		spin_unlock_irqrestore(&s->lock, flags);
		if (count < 0)
			count = 0;
		abinfo.bytes = (s->dma_dac.dmasize - count) /
			s->dma_dac.cnt_factor;
		abinfo.fragstotal = s->dma_dac.numfrag;
		abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift;
		pr_debug("ioctl SNDCTL_DSP_GETOSPACE: bytes=%d, fragments=%d\n", abinfo.bytes, abinfo.fragments);
		return copy_to_user((void *) arg, &abinfo,
				    sizeof(abinfo)) ? -EFAULT : 0;

	case SNDCTL_DSP_GETISPACE:
		if (!(file->f_mode & FMODE_READ))
			return -EINVAL;
		abinfo.fragsize = s->dma_adc.fragsize;
		spin_lock_irqsave(&s->lock, flags);
		count = s->dma_adc.count;
		count += dma_count_done(&s->dma_adc);
		spin_unlock_irqrestore(&s->lock, flags);
		if (count < 0)
			count = 0;
		abinfo.bytes = count / s->dma_adc.cnt_factor;
		abinfo.fragstotal = s->dma_adc.numfrag;
		abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift;
		return copy_to_user((void *) arg, &abinfo,
				    sizeof(abinfo)) ? -EFAULT : 0;

	case SNDCTL_DSP_NONBLOCK:
		file->f_flags |= O_NONBLOCK;
		return 0;

	case SNDCTL_DSP_GETODELAY:
		if (!(file->f_mode & FMODE_WRITE))
			return -EINVAL;
		spin_lock_irqsave(&s->lock, flags);
		count = s->dma_dac.count;
		count -= dma_count_done(&s->dma_dac);
		spin_unlock_irqrestore(&s->lock, flags);
		if (count < 0)
			count = 0;
		count /= s->dma_dac.cnt_factor;
		return put_user(count, (int *) arg);

	case SNDCTL_DSP_GETIPTR:
		if (!(file->f_mode & FMODE_READ))
			return -EINVAL;
		spin_lock_irqsave(&s->lock, flags);
		cinfo.bytes = s->dma_adc.total_bytes;
		count = s->dma_adc.count;
		if (!s->dma_adc.stopped) {
			diff = dma_count_done(&s->dma_adc);
			count += diff;
			cinfo.bytes += diff;
			cinfo.ptr =  virt_to_phys(s->dma_adc.nextIn) + diff -
				virt_to_phys(s->dma_adc.rawbuf);
		} else
			cinfo.ptr = virt_to_phys(s->dma_adc.nextIn) -
				virt_to_phys(s->dma_adc.rawbuf);
		if (s->dma_adc.mapped)
			s->dma_adc.count &= (s->dma_adc.dma_fragsize-1);
		spin_unlock_irqrestore(&s->lock, flags);
		if (count < 0)
			count = 0;
		cinfo.blocks = count >> s->dma_adc.fragshift;
		return copy_to_user((void *) arg, &cinfo, sizeof(cinfo));

	case SNDCTL_DSP_GETOPTR:
		if (!(file->f_mode & FMODE_READ))
			return -EINVAL;
		spin_lock_irqsave(&s->lock, flags);
		cinfo.bytes = s->dma_dac.total_bytes;
		count = s->dma_dac.count;
		if (!s->dma_dac.stopped) {
			diff = dma_count_done(&s->dma_dac);
			count -= diff;
			cinfo.bytes += diff;
			cinfo.ptr = virt_to_phys(s->dma_dac.nextOut) + diff -
				virt_to_phys(s->dma_dac.rawbuf);
		} else
			cinfo.ptr = virt_to_phys(s->dma_dac.nextOut) -
				virt_to_phys(s->dma_dac.rawbuf);
		if (s->dma_dac.mapped)
			s->dma_dac.count &= (s->dma_dac.dma_fragsize-1);
		spin_unlock_irqrestore(&s->lock, flags);
		if (count < 0)
			count = 0;
		cinfo.blocks = count >> s->dma_dac.fragshift;
		return copy_to_user((void *) arg, &cinfo, sizeof(cinfo));

	case SNDCTL_DSP_GETBLKSIZE:
		if (file->f_mode & FMODE_WRITE)
			return put_user(s->dma_dac.fragsize, (int *) arg);
		else
			return put_user(s->dma_adc.fragsize, (int *) arg);

	case SNDCTL_DSP_SETFRAGMENT:
		if (get_user(val, (int *) arg))
			return -EFAULT;
		if (file->f_mode & FMODE_READ) {
			stop_adc(s);
			s->dma_adc.ossfragshift = val & 0xffff;
			s->dma_adc.ossmaxfrags = (val >> 16) & 0xffff;
			if (s->dma_adc.ossfragshift < 4)
				s->dma_adc.ossfragshift = 4;
			if (s->dma_adc.ossfragshift > 15)
				s->dma_adc.ossfragshift = 15;
			if (s->dma_adc.ossmaxfrags < 4)
				s->dma_adc.ossmaxfrags = 4;
			if ((ret = prog_dmabuf_adc(s)))
				return ret;
		}
		if (file->f_mode & FMODE_WRITE) {
			stop_dac(s);
			s->dma_dac.ossfragshift = val & 0xffff;
			s->dma_dac.ossmaxfrags = (val >> 16) & 0xffff;
			if (s->dma_dac.ossfragshift < 4)
				s->dma_dac.ossfragshift = 4;
			if (s->dma_dac.ossfragshift > 15)
				s->dma_dac.ossfragshift = 15;
			if (s->dma_dac.ossmaxfrags < 4)
				s->dma_dac.ossmaxfrags = 4;
			if ((ret = prog_dmabuf_dac(s)))
				return ret;
		}
		return 0;

	case SNDCTL_DSP_SUBDIVIDE:
		if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) ||
		    (file->f_mode & FMODE_WRITE && s->dma_dac.subdivision))
			return -EINVAL;
		if (get_user(val, (int *) arg))
			return -EFAULT;
		if (val != 1 && val != 2 && val != 4)
			return -EINVAL;
		if (file->f_mode & FMODE_READ) {
			stop_adc(s);
			s->dma_adc.subdivision = val;
			if ((ret = prog_dmabuf_adc(s)))
				return ret;
		}
		if (file->f_mode & FMODE_WRITE) {
			stop_dac(s);
			s->dma_dac.subdivision = val;
			if ((ret = prog_dmabuf_dac(s)))
				return ret;
		}
		return 0;

	case SOUND_PCM_READ_RATE:
		return put_user((file->f_mode & FMODE_READ) ?
				s->dma_adc.sample_rate :
				s->dma_dac.sample_rate,
				(int *)arg);

	case SOUND_PCM_READ_CHANNELS:
		if (file->f_mode & FMODE_READ)
			return put_user(s->dma_adc.num_channels, (int *)arg);
		else
			return put_user(s->dma_dac.num_channels, (int *)arg);

	case SOUND_PCM_READ_BITS:
		if (file->f_mode & FMODE_READ)
			return put_user(s->dma_adc.sample_size, (int *)arg);
		else
			return put_user(s->dma_dac.sample_size, (int *)arg);

	case SOUND_PCM_WRITE_FILTER:
	case SNDCTL_DSP_SETSYNCRO:
	case SOUND_PCM_READ_FILTER:
		return -EINVAL;
	}

	return mixdev_ioctl(s->codec, cmd, arg);
}


static int
au1550_open(struct inode *inode, struct file *file)
{
	int             minor = MINOR(inode->i_rdev);
	DECLARE_WAITQUEUE(wait, current);
	struct au1550_state *s = &au1550_state;
	int             ret;

#ifdef DEBUG
	if (file->f_flags & O_NONBLOCK)
		pr_debug("open: non-blocking\n");
	else
		pr_debug("open: blocking\n");
#endif

	file->private_data = s;
	/* wait for device to become free */
	mutex_lock(&s->open_mutex);
	while (s->open_mode & file->f_mode) {
		if (file->f_flags & O_NONBLOCK) {
			mutex_unlock(&s->open_mutex);
			return -EBUSY;
		}
		add_wait_queue(&s->open_wait, &wait);
		__set_current_state(TASK_INTERRUPTIBLE);
		mutex_unlock(&s->open_mutex);
		schedule();
		remove_wait_queue(&s->open_wait, &wait);
		set_current_state(TASK_RUNNING);
		if (signal_pending(current))
			return -ERESTARTSYS;
		mutex_lock(&s->open_mutex);
	}

	stop_dac(s);
	stop_adc(s);

	if (file->f_mode & FMODE_READ) {
		s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags =
			s->dma_adc.subdivision = s->dma_adc.total_bytes = 0;
		s->dma_adc.num_channels = 1;
		s->dma_adc.sample_size = 8;
		set_adc_rate(s, 8000);
		if ((minor & 0xf) == SND_DEV_DSP16)
			s->dma_adc.sample_size = 16;
	}

	if (file->f_mode & FMODE_WRITE) {
		s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags =
			s->dma_dac.subdivision = s->dma_dac.total_bytes = 0;
		s->dma_dac.num_channels = 1;
		s->dma_dac.sample_size = 8;
		set_dac_rate(s, 8000);
		if ((minor & 0xf) == SND_DEV_DSP16)
			s->dma_dac.sample_size = 16;
	}

	if (file->f_mode & FMODE_READ) {
		if ((ret = prog_dmabuf_adc(s)))
			return ret;
	}
	if (file->f_mode & FMODE_WRITE) {
		if ((ret = prog_dmabuf_dac(s)))
			return ret;
	}

	s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
	mutex_unlock(&s->open_mutex);
	mutex_init(&s->sem);
	return 0;
}

static int
au1550_release(struct inode *inode, struct file *file)
{
	struct au1550_state *s = (struct au1550_state *)file->private_data;

	lock_kernel();

	if (file->f_mode & FMODE_WRITE) {
		unlock_kernel();
		drain_dac(s, file->f_flags & O_NONBLOCK);
		lock_kernel();
	}

	mutex_lock(&s->open_mutex);
	if (file->f_mode & FMODE_WRITE) {
		stop_dac(s);
		kfree(s->dma_dac.rawbuf);
		s->dma_dac.rawbuf = NULL;
	}
	if (file->f_mode & FMODE_READ) {
		stop_adc(s);
		kfree(s->dma_adc.rawbuf);
		s->dma_adc.rawbuf = NULL;
	}
	s->open_mode &= ((~file->f_mode) & (FMODE_READ|FMODE_WRITE));
	mutex_unlock(&s->open_mutex);
	wake_up(&s->open_wait);
	unlock_kernel();
	return 0;
}

static /*const */ struct file_operations au1550_audio_fops = {
	owner:		THIS_MODULE,
	llseek:		au1550_llseek,
	read:		au1550_read,
	write:		au1550_write,
	poll:		au1550_poll,
	ioctl:		au1550_ioctl,
	mmap:		au1550_mmap,
	open:		au1550_open,
	release:	au1550_release,
};

MODULE_AUTHOR("Advanced Micro Devices (AMD), dan@embeddededge.com");
MODULE_DESCRIPTION("Au1550 AC97 Audio Driver");
MODULE_LICENSE("GPL");


static int __devinit
au1550_probe(void)
{
	struct au1550_state *s = &au1550_state;
	int             val;

	memset(s, 0, sizeof(struct au1550_state));

	init_waitqueue_head(&s->dma_adc.wait);
	init_waitqueue_head(&s->dma_dac.wait);
	init_waitqueue_head(&s->open_wait);
	mutex_init(&s->open_mutex);
	spin_lock_init(&s->lock);

	s->codec = ac97_alloc_codec();
	if(s->codec == NULL) {
		err("Out of memory");
		return -1;
	}
	s->codec->private_data = s;
	s->codec->id = 0;
	s->codec->codec_read = rdcodec;
	s->codec->codec_write = wrcodec;
	s->codec->codec_wait = waitcodec;

	if (!request_mem_region(CPHYSADDR(AC97_PSC_SEL),
			    0x30, "Au1550 AC97")) {
		err("AC'97 ports in use");
	}

	/* Allocate the DMA Channels
	*/
	if ((s->dma_dac.dmanr = au1xxx_dbdma_chan_alloc(DBDMA_MEM_CHAN,
	    DBDMA_AC97_TX_CHAN, dac_dma_interrupt, (void *)s)) == 0) {
		err("Can't get DAC DMA");
		goto err_dma1;
	}
	au1xxx_dbdma_set_devwidth(s->dma_dac.dmanr, 16);
	if (au1xxx_dbdma_ring_alloc(s->dma_dac.dmanr,
					NUM_DBDMA_DESCRIPTORS) == 0) {
		err("Can't get DAC DMA descriptors");
		goto err_dma1;
	}

	if ((s->dma_adc.dmanr = au1xxx_dbdma_chan_alloc(DBDMA_AC97_RX_CHAN,
	    DBDMA_MEM_CHAN, adc_dma_interrupt, (void *)s)) == 0) {
		err("Can't get ADC DMA");
		goto err_dma2;
	}
	au1xxx_dbdma_set_devwidth(s->dma_adc.dmanr, 16);
	if (au1xxx_dbdma_ring_alloc(s->dma_adc.dmanr,
					NUM_DBDMA_DESCRIPTORS) == 0) {
		err("Can't get ADC DMA descriptors");
		goto err_dma2;
	}

	pr_info("DAC: DMA%d, ADC: DMA%d", DBDMA_AC97_TX_CHAN, DBDMA_AC97_RX_CHAN);

	/* register devices */

	if ((s->dev_audio = register_sound_dsp(&au1550_audio_fops, -1)) < 0)
		goto err_dev1;
	if ((s->codec->dev_mixer =
	     register_sound_mixer(&au1550_mixer_fops, -1)) < 0)
		goto err_dev2;

	/* The GPIO for the appropriate PSC was configured by the
	 * board specific start up.
	 *
	 * configure PSC for AC'97
	 */
	au_writel(0, AC97_PSC_CTRL);	/* Disable PSC */
	au_sync();
	au_writel((PSC_SEL_CLK_SERCLK | PSC_SEL_PS_AC97MODE), AC97_PSC_SEL);
	au_sync();

	/* cold reset the AC'97
	*/
	au_writel(PSC_AC97RST_RST, PSC_AC97RST);
	au_sync();
	au1550_delay(10);
	au_writel(0, PSC_AC97RST);
	au_sync();

	/* need to delay around 500msec(bleech) to give
	   some CODECs enough time to wakeup */
	au1550_delay(500);

	/* warm reset the AC'97 to start the bitclk
	*/
	au_writel(PSC_AC97RST_SNC, PSC_AC97RST);
	au_sync();
	udelay(100);
	au_writel(0, PSC_AC97RST);
	au_sync();

	/* Enable PSC
	*/
	au_writel(PSC_CTRL_ENABLE, AC97_PSC_CTRL);
	au_sync();

	/* Wait for PSC ready.
	*/
	do {
		val = au_readl(PSC_AC97STAT);
		au_sync();
	} while ((val & PSC_AC97STAT_SR) == 0);

	/* Configure AC97 controller.
	 * Deep FIFO, 16-bit sample, DMA, make sure DMA matches fifo size.
	 */
	val = PSC_AC97CFG_SET_LEN(16);
	val |= PSC_AC97CFG_RT_FIFO8 | PSC_AC97CFG_TT_FIFO8;

	/* Enable device so we can at least
	 * talk over the AC-link.
	 */
	au_writel(val, PSC_AC97CFG);
	au_writel(PSC_AC97MSK_ALLMASK, PSC_AC97MSK);
	au_sync();
	val |= PSC_AC97CFG_DE_ENABLE;
	au_writel(val, PSC_AC97CFG);
	au_sync();

	/* Wait for Device ready.
	*/
	do {
		val = au_readl(PSC_AC97STAT);
		au_sync();
	} while ((val & PSC_AC97STAT_DR) == 0);

	/* codec init */
	if (!ac97_probe_codec(s->codec))
		goto err_dev3;

	s->codec_base_caps = rdcodec(s->codec, AC97_RESET);
	s->codec_ext_caps = rdcodec(s->codec, AC97_EXTENDED_ID);
	pr_info("AC'97 Base/Extended ID = %04x/%04x",
	     s->codec_base_caps, s->codec_ext_caps);

	if (!(s->codec_ext_caps & AC97_EXTID_VRA)) {
		/* codec does not support VRA
		*/
		s->no_vra = 1;
	} else if (!vra) {
		/* Boot option says disable VRA
		*/
		u16 ac97_extstat = rdcodec(s->codec, AC97_EXTENDED_STATUS);
		wrcodec(s->codec, AC97_EXTENDED_STATUS,
			ac97_extstat & ~AC97_EXTSTAT_VRA);
		s->no_vra = 1;
	}
	if (s->no_vra)
		pr_info("no VRA, interpolating and decimating");

	/* set mic to be the recording source */
	val = SOUND_MASK_MIC;
	mixdev_ioctl(s->codec, SOUND_MIXER_WRITE_RECSRC,
		     (unsigned long) &val);

	return 0;

 err_dev3:
	unregister_sound_mixer(s->codec->dev_mixer);
 err_dev2:
	unregister_sound_dsp(s->dev_audio);
 err_dev1:
	au1xxx_dbdma_chan_free(s->dma_adc.dmanr);
 err_dma2:
	au1xxx_dbdma_chan_free(s->dma_dac.dmanr);
 err_dma1:
	release_mem_region(CPHYSADDR(AC97_PSC_SEL), 0x30);

	ac97_release_codec(s->codec);
	return -1;
}

static void __devinit
au1550_remove(void)
{
	struct au1550_state *s = &au1550_state;

	if (!s)
		return;
	synchronize_irq();
	au1xxx_dbdma_chan_free(s->dma_adc.dmanr);
	au1xxx_dbdma_chan_free(s->dma_dac.dmanr);
	release_mem_region(CPHYSADDR(AC97_PSC_SEL), 0x30);
	unregister_sound_dsp(s->dev_audio);
	unregister_sound_mixer(s->codec->dev_mixer);
	ac97_release_codec(s->codec);
}

static int __init
init_au1550(void)
{
	return au1550_probe();
}

static void __exit
cleanup_au1550(void)
{
	au1550_remove();
}

module_init(init_au1550);
module_exit(cleanup_au1550);

#ifndef MODULE

static int __init
au1550_setup(char *options)
{
	char           *this_opt;

	if (!options || !*options)
		return 0;

	while ((this_opt = strsep(&options, ","))) {
		if (!*this_opt)
			continue;
		if (!strncmp(this_opt, "vra", 3)) {
			vra = 1;
		}
	}

	return 1;
}

__setup("au1550_audio=", au1550_setup);

#endif /* MODULE */
back to top