Revision fe53297356da5f02478fe9cafab5d9914a36d2be authored by Thorsten Becker on 14 August 2007, 03:33:21 UTC, committed by Thorsten Becker on 14 August 2007, 03:33:21 UTC
  spacing to top and lower layers of shell. The
  coor_refine=0.1,0.15,0.1,0.2 parameters specify the radius fraction
  of the bottom layer [0], the fraction of the nodes in this layer
  [1], the top layer fraction [2], and the top layer node fraction
  [3]. I.e. the defaults will put 15% of all nz nodes into the 10%
  lower layer, 20% in the top 10% upper layer, and the rest in
  between.
  

- renamed gzipped output version with sub-directory storage ascii-gz

- built in restart facilities for temperature and tracers when using
  ascii-gz I/O with vtkio != 2


- added a composition viscosity function, CDEPV, based on two tracer
  flavors

  - for this to work, I had to move viscosity_input() *behind*
    tic_input() and tracer_input() in instructions


- added tracer_enriched option for internal heating. If tracer = on
  and tracer_enriched = on, will reader Q0_enriched and vary the element heat production 
  between Q0 for C = 0 and Q0_enriched for C = 1. I.e. this only works
  if C varies between 0 and 1.


- added an option to write from all processros to a single VTK file,
  if ascii-gz is activated, and vtkio = 2. The VTK output is of the
  "legacy", serial, single-file type, and requires that all processors see the same 
   filesystem. 

   This will lead to a bottleneck for large # of CPU computations as
   each processor has to wait til the previous is done. 

   More efficient I/O should be possible by using the distributed
   storage version of VTK, but I have no clue how this works. Anyone?







1 parent d6e512c
Raw File
Full_geometry_cartesian.c
/*
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *<LicenseText>
 *
 * CitcomS by Louis Moresi, Shijie Zhong, Lijie Han, Eh Tan,
 * Clint Conrad, Michael Gurnis, and Eun-seo Choi.
 * Copyright (C) 1994-2005, California Institute of Technology.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *</LicenseText>
 *
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 */
#include <math.h>
#include "element_definitions.h"
#include "global_defs.h"



void full_set_2dc_defaults(E)
     struct All_variables *E;
{

  E->mesh.nsd = 2;
  E->mesh.dof = 2;

}


void full_set_2pt5dc_defaults(E)
    struct All_variables *E;
{

  E->mesh.nsd = 2;
  E->mesh.dof = 3;

}

void full_set_3dc_defaults(E)
     struct All_variables *E;
{

  E->mesh.nsd = 3;
  E->mesh.dof = 3;

}

void full_set_3dsphere_defaults(E)
     struct All_variables *E;
{
  void full_set_3dsphere_defaults2(struct All_variables *);
  int m=E->parallel.me;

  input_double("radius_outer",&(E->sphere.ro),"1",m);
  input_double("radius_inner",&(E->sphere.ri),"0.55",m);

  full_set_3dsphere_defaults2(E);

  return;
}


void full_set_3dsphere_defaults2(struct All_variables *E)
{
  int i,j;
  double offset;

  E->mesh.nsd = 3;
  E->mesh.dof = 3;

  E->sphere.caps = 12;
  E->sphere.max_connections = 6;

  offset = 10.0/180.0*M_PI;

  for (i=1;i<=4;i++)  {
    E->sphere.cap[(i-1)*3+1].theta[1] = 0.0;
    E->sphere.cap[(i-1)*3+1].theta[2] = M_PI/4.0+offset;
    E->sphere.cap[(i-1)*3+1].theta[3] = M_PI/2.0;
    E->sphere.cap[(i-1)*3+1].theta[4] = M_PI/4.0+offset;
    E->sphere.cap[(i-1)*3+1].fi[1] = 0.0;
    E->sphere.cap[(i-1)*3+1].fi[2] = (i-1)*M_PI/2.0;
    E->sphere.cap[(i-1)*3+1].fi[3] = (i-1)*M_PI/2.0 + M_PI/4.0;
    E->sphere.cap[(i-1)*3+1].fi[4] = i*M_PI/2.0;

    E->sphere.cap[(i-1)*3+2].theta[1] = M_PI/4.0+offset;
    E->sphere.cap[(i-1)*3+2].theta[2] = M_PI/2.0;
    E->sphere.cap[(i-1)*3+2].theta[3] = 3*M_PI/4.0-offset;
    E->sphere.cap[(i-1)*3+2].theta[4] = M_PI/2.0;
    E->sphere.cap[(i-1)*3+2].fi[1] = i*M_PI/2.0;
    E->sphere.cap[(i-1)*3+2].fi[2] = i*M_PI/2.0 - M_PI/4.0;
    E->sphere.cap[(i-1)*3+2].fi[3] = i*M_PI/2.0;
    E->sphere.cap[(i-1)*3+2].fi[4] = i*M_PI/2.0 + M_PI/4.0;
    }

  for (i=1;i<=4;i++)  {
    j = (i-1)*3;
    if (i==1) j=12;
    E->sphere.cap[j].theta[1] = M_PI/2.0;
    E->sphere.cap[j].theta[2] = 3*M_PI/4.0-offset;
    E->sphere.cap[j].theta[3] = M_PI;
    E->sphere.cap[j].theta[4] = 3*M_PI/4.0-offset;
    E->sphere.cap[j].fi[1] = (i-1)*M_PI/2.0 + M_PI/4.0;
    E->sphere.cap[j].fi[2] = (i-1)*M_PI/2.0;
    E->sphere.cap[j].fi[3] = 0.0;
    E->sphere.cap[j].fi[4] = i*M_PI/2.0;
    }

  return;
}
back to top