swh:1:snp:49cd9498d6cccc5e78252c27dcb645bcf7bf0c91
Raw File
Tip revision: 3d7cb6b04c3f3115719235cc6866b10326de34cd authored by Linus Torvalds on 31 July 2022, 21:03:01 UTC
Linux 5.19
Tip revision: 3d7cb6b
mem.c
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright(c) 2022 Intel Corporation. All rights reserved. */
#include <linux/device.h>
#include <linux/module.h>
#include <linux/pci.h>

#include "cxlmem.h"
#include "cxlpci.h"

/**
 * DOC: cxl mem
 *
 * CXL memory endpoint devices and switches are CXL capable devices that are
 * participating in CXL.mem protocol. Their functionality builds on top of the
 * CXL.io protocol that allows enumerating and configuring components via
 * standard PCI mechanisms.
 *
 * The cxl_mem driver owns kicking off the enumeration of this CXL.mem
 * capability. With the detection of a CXL capable endpoint, the driver will
 * walk up to find the platform specific port it is connected to, and determine
 * if there are intervening switches in the path. If there are switches, a
 * secondary action is to enumerate those (implemented in cxl_core). Finally the
 * cxl_mem driver adds the device it is bound to as a CXL endpoint-port for use
 * in higher level operations.
 */

static int create_endpoint(struct cxl_memdev *cxlmd,
			   struct cxl_port *parent_port)
{
	struct cxl_dev_state *cxlds = cxlmd->cxlds;
	struct cxl_port *endpoint;
	int rc;

	endpoint = devm_cxl_add_port(&parent_port->dev, &cxlmd->dev,
				     cxlds->component_reg_phys, parent_port);
	if (IS_ERR(endpoint))
		return PTR_ERR(endpoint);

	dev_dbg(&cxlmd->dev, "add: %s\n", dev_name(&endpoint->dev));

	rc = cxl_endpoint_autoremove(cxlmd, endpoint);
	if (rc)
		return rc;

	if (!endpoint->dev.driver) {
		dev_err(&cxlmd->dev, "%s failed probe\n",
			dev_name(&endpoint->dev));
		return -ENXIO;
	}

	return 0;
}

static void enable_suspend(void *data)
{
	cxl_mem_active_dec();
}

static int cxl_mem_probe(struct device *dev)
{
	struct cxl_memdev *cxlmd = to_cxl_memdev(dev);
	struct cxl_port *parent_port;
	int rc;

	/*
	 * Someone is trying to reattach this device after it lost its port
	 * connection (an endpoint port previously registered by this memdev was
	 * disabled). This racy check is ok because if the port is still gone,
	 * no harm done, and if the port hierarchy comes back it will re-trigger
	 * this probe. Port rescan and memdev detach work share the same
	 * single-threaded workqueue.
	 */
	if (work_pending(&cxlmd->detach_work))
		return -EBUSY;

	rc = devm_cxl_enumerate_ports(cxlmd);
	if (rc)
		return rc;

	parent_port = cxl_mem_find_port(cxlmd);
	if (!parent_port) {
		dev_err(dev, "CXL port topology not found\n");
		return -ENXIO;
	}

	device_lock(&parent_port->dev);
	if (!parent_port->dev.driver) {
		dev_err(dev, "CXL port topology %s not enabled\n",
			dev_name(&parent_port->dev));
		rc = -ENXIO;
		goto unlock;
	}

	rc = create_endpoint(cxlmd, parent_port);
unlock:
	device_unlock(&parent_port->dev);
	put_device(&parent_port->dev);
	if (rc)
		return rc;

	/*
	 * The kernel may be operating out of CXL memory on this device,
	 * there is no spec defined way to determine whether this device
	 * preserves contents over suspend, and there is no simple way
	 * to arrange for the suspend image to avoid CXL memory which
	 * would setup a circular dependency between PCI resume and save
	 * state restoration.
	 *
	 * TODO: support suspend when all the regions this device is
	 * hosting are locked and covered by the system address map,
	 * i.e. platform firmware owns restoring the HDM configuration
	 * that it locked.
	 */
	cxl_mem_active_inc();
	return devm_add_action_or_reset(dev, enable_suspend, NULL);
}

static struct cxl_driver cxl_mem_driver = {
	.name = "cxl_mem",
	.probe = cxl_mem_probe,
	.id = CXL_DEVICE_MEMORY_EXPANDER,
};

module_cxl_driver(cxl_mem_driver);

MODULE_LICENSE("GPL v2");
MODULE_IMPORT_NS(CXL);
MODULE_ALIAS_CXL(CXL_DEVICE_MEMORY_EXPANDER);
/*
 * create_endpoint() wants to validate port driver attach immediately after
 * endpoint registration.
 */
MODULE_SOFTDEP("pre: cxl_port");
back to top