swh:1:snp:49cd9498d6cccc5e78252c27dcb645bcf7bf0c91
Raw File
Tip revision: fa55b7dcdc43c1aa1ba12bca9d2dd4318c2a0dbf authored by Linus Torvalds on 14 November 2021, 21:56:52 UTC
Linux 5.16-rc1
Tip revision: fa55b7d
dma-resv.c
// SPDX-License-Identifier: MIT
/*
 * Copyright (C) 2012-2014 Canonical Ltd (Maarten Lankhorst)
 *
 * Based on bo.c which bears the following copyright notice,
 * but is dual licensed:
 *
 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 **************************************************************************/
/*
 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
 */

#include <linux/dma-resv.h>
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/sched/mm.h>
#include <linux/mmu_notifier.h>

/**
 * DOC: Reservation Object Overview
 *
 * The reservation object provides a mechanism to manage shared and
 * exclusive fences associated with a buffer.  A reservation object
 * can have attached one exclusive fence (normally associated with
 * write operations) or N shared fences (read operations).  The RCU
 * mechanism is used to protect read access to fences from locked
 * write-side updates.
 *
 * See struct dma_resv for more details.
 */

DEFINE_WD_CLASS(reservation_ww_class);
EXPORT_SYMBOL(reservation_ww_class);

/**
 * dma_resv_list_alloc - allocate fence list
 * @shared_max: number of fences we need space for
 *
 * Allocate a new dma_resv_list and make sure to correctly initialize
 * shared_max.
 */
static struct dma_resv_list *dma_resv_list_alloc(unsigned int shared_max)
{
	struct dma_resv_list *list;

	list = kmalloc(struct_size(list, shared, shared_max), GFP_KERNEL);
	if (!list)
		return NULL;

	list->shared_max = (ksize(list) - offsetof(typeof(*list), shared)) /
		sizeof(*list->shared);

	return list;
}

/**
 * dma_resv_list_free - free fence list
 * @list: list to free
 *
 * Free a dma_resv_list and make sure to drop all references.
 */
static void dma_resv_list_free(struct dma_resv_list *list)
{
	unsigned int i;

	if (!list)
		return;

	for (i = 0; i < list->shared_count; ++i)
		dma_fence_put(rcu_dereference_protected(list->shared[i], true));

	kfree_rcu(list, rcu);
}

/**
 * dma_resv_init - initialize a reservation object
 * @obj: the reservation object
 */
void dma_resv_init(struct dma_resv *obj)
{
	ww_mutex_init(&obj->lock, &reservation_ww_class);
	seqcount_ww_mutex_init(&obj->seq, &obj->lock);

	RCU_INIT_POINTER(obj->fence, NULL);
	RCU_INIT_POINTER(obj->fence_excl, NULL);
}
EXPORT_SYMBOL(dma_resv_init);

/**
 * dma_resv_fini - destroys a reservation object
 * @obj: the reservation object
 */
void dma_resv_fini(struct dma_resv *obj)
{
	struct dma_resv_list *fobj;
	struct dma_fence *excl;

	/*
	 * This object should be dead and all references must have
	 * been released to it, so no need to be protected with rcu.
	 */
	excl = rcu_dereference_protected(obj->fence_excl, 1);
	if (excl)
		dma_fence_put(excl);

	fobj = rcu_dereference_protected(obj->fence, 1);
	dma_resv_list_free(fobj);
	ww_mutex_destroy(&obj->lock);
}
EXPORT_SYMBOL(dma_resv_fini);

/**
 * dma_resv_reserve_shared - Reserve space to add shared fences to
 * a dma_resv.
 * @obj: reservation object
 * @num_fences: number of fences we want to add
 *
 * Should be called before dma_resv_add_shared_fence().  Must
 * be called with @obj locked through dma_resv_lock().
 *
 * Note that the preallocated slots need to be re-reserved if @obj is unlocked
 * at any time before calling dma_resv_add_shared_fence(). This is validated
 * when CONFIG_DEBUG_MUTEXES is enabled.
 *
 * RETURNS
 * Zero for success, or -errno
 */
int dma_resv_reserve_shared(struct dma_resv *obj, unsigned int num_fences)
{
	struct dma_resv_list *old, *new;
	unsigned int i, j, k, max;

	dma_resv_assert_held(obj);

	old = dma_resv_shared_list(obj);
	if (old && old->shared_max) {
		if ((old->shared_count + num_fences) <= old->shared_max)
			return 0;
		max = max(old->shared_count + num_fences, old->shared_max * 2);
	} else {
		max = max(4ul, roundup_pow_of_two(num_fences));
	}

	new = dma_resv_list_alloc(max);
	if (!new)
		return -ENOMEM;

	/*
	 * no need to bump fence refcounts, rcu_read access
	 * requires the use of kref_get_unless_zero, and the
	 * references from the old struct are carried over to
	 * the new.
	 */
	for (i = 0, j = 0, k = max; i < (old ? old->shared_count : 0); ++i) {
		struct dma_fence *fence;

		fence = rcu_dereference_protected(old->shared[i],
						  dma_resv_held(obj));
		if (dma_fence_is_signaled(fence))
			RCU_INIT_POINTER(new->shared[--k], fence);
		else
			RCU_INIT_POINTER(new->shared[j++], fence);
	}
	new->shared_count = j;

	/*
	 * We are not changing the effective set of fences here so can
	 * merely update the pointer to the new array; both existing
	 * readers and new readers will see exactly the same set of
	 * active (unsignaled) shared fences. Individual fences and the
	 * old array are protected by RCU and so will not vanish under
	 * the gaze of the rcu_read_lock() readers.
	 */
	rcu_assign_pointer(obj->fence, new);

	if (!old)
		return 0;

	/* Drop the references to the signaled fences */
	for (i = k; i < max; ++i) {
		struct dma_fence *fence;

		fence = rcu_dereference_protected(new->shared[i],
						  dma_resv_held(obj));
		dma_fence_put(fence);
	}
	kfree_rcu(old, rcu);

	return 0;
}
EXPORT_SYMBOL(dma_resv_reserve_shared);

#ifdef CONFIG_DEBUG_MUTEXES
/**
 * dma_resv_reset_shared_max - reset shared fences for debugging
 * @obj: the dma_resv object to reset
 *
 * Reset the number of pre-reserved shared slots to test that drivers do
 * correct slot allocation using dma_resv_reserve_shared(). See also
 * &dma_resv_list.shared_max.
 */
void dma_resv_reset_shared_max(struct dma_resv *obj)
{
	struct dma_resv_list *fences = dma_resv_shared_list(obj);

	dma_resv_assert_held(obj);

	/* Test shared fence slot reservation */
	if (fences)
		fences->shared_max = fences->shared_count;
}
EXPORT_SYMBOL(dma_resv_reset_shared_max);
#endif

/**
 * dma_resv_add_shared_fence - Add a fence to a shared slot
 * @obj: the reservation object
 * @fence: the shared fence to add
 *
 * Add a fence to a shared slot, @obj must be locked with dma_resv_lock(), and
 * dma_resv_reserve_shared() has been called.
 *
 * See also &dma_resv.fence for a discussion of the semantics.
 */
void dma_resv_add_shared_fence(struct dma_resv *obj, struct dma_fence *fence)
{
	struct dma_resv_list *fobj;
	struct dma_fence *old;
	unsigned int i, count;

	dma_fence_get(fence);

	dma_resv_assert_held(obj);

	fobj = dma_resv_shared_list(obj);
	count = fobj->shared_count;

	write_seqcount_begin(&obj->seq);

	for (i = 0; i < count; ++i) {

		old = rcu_dereference_protected(fobj->shared[i],
						dma_resv_held(obj));
		if (old->context == fence->context ||
		    dma_fence_is_signaled(old))
			goto replace;
	}

	BUG_ON(fobj->shared_count >= fobj->shared_max);
	old = NULL;
	count++;

replace:
	RCU_INIT_POINTER(fobj->shared[i], fence);
	/* pointer update must be visible before we extend the shared_count */
	smp_store_mb(fobj->shared_count, count);

	write_seqcount_end(&obj->seq);
	dma_fence_put(old);
}
EXPORT_SYMBOL(dma_resv_add_shared_fence);

/**
 * dma_resv_add_excl_fence - Add an exclusive fence.
 * @obj: the reservation object
 * @fence: the exclusive fence to add
 *
 * Add a fence to the exclusive slot. @obj must be locked with dma_resv_lock().
 * Note that this function replaces all fences attached to @obj, see also
 * &dma_resv.fence_excl for a discussion of the semantics.
 */
void dma_resv_add_excl_fence(struct dma_resv *obj, struct dma_fence *fence)
{
	struct dma_fence *old_fence = dma_resv_excl_fence(obj);
	struct dma_resv_list *old;
	u32 i = 0;

	dma_resv_assert_held(obj);

	old = dma_resv_shared_list(obj);
	if (old)
		i = old->shared_count;

	if (fence)
		dma_fence_get(fence);

	write_seqcount_begin(&obj->seq);
	/* write_seqcount_begin provides the necessary memory barrier */
	RCU_INIT_POINTER(obj->fence_excl, fence);
	if (old)
		old->shared_count = 0;
	write_seqcount_end(&obj->seq);

	/* inplace update, no shared fences */
	while (i--)
		dma_fence_put(rcu_dereference_protected(old->shared[i],
						dma_resv_held(obj)));

	dma_fence_put(old_fence);
}
EXPORT_SYMBOL(dma_resv_add_excl_fence);

/**
 * dma_resv_iter_restart_unlocked - restart the unlocked iterator
 * @cursor: The dma_resv_iter object to restart
 *
 * Restart the unlocked iteration by initializing the cursor object.
 */
static void dma_resv_iter_restart_unlocked(struct dma_resv_iter *cursor)
{
	cursor->seq = read_seqcount_begin(&cursor->obj->seq);
	cursor->index = -1;
	cursor->shared_count = 0;
	if (cursor->all_fences) {
		cursor->fences = dma_resv_shared_list(cursor->obj);
		if (cursor->fences)
			cursor->shared_count = cursor->fences->shared_count;
	} else {
		cursor->fences = NULL;
	}
	cursor->is_restarted = true;
}

/**
 * dma_resv_iter_walk_unlocked - walk over fences in a dma_resv obj
 * @cursor: cursor to record the current position
 *
 * Return all the fences in the dma_resv object which are not yet signaled.
 * The returned fence has an extra local reference so will stay alive.
 * If a concurrent modify is detected the whole iteration is started over again.
 */
static void dma_resv_iter_walk_unlocked(struct dma_resv_iter *cursor)
{
	struct dma_resv *obj = cursor->obj;

	do {
		/* Drop the reference from the previous round */
		dma_fence_put(cursor->fence);

		if (cursor->index == -1) {
			cursor->fence = dma_resv_excl_fence(obj);
			cursor->index++;
			if (!cursor->fence)
				continue;

		} else if (!cursor->fences ||
			   cursor->index >= cursor->shared_count) {
			cursor->fence = NULL;
			break;

		} else {
			struct dma_resv_list *fences = cursor->fences;
			unsigned int idx = cursor->index++;

			cursor->fence = rcu_dereference(fences->shared[idx]);
		}
		cursor->fence = dma_fence_get_rcu(cursor->fence);
		if (!cursor->fence || !dma_fence_is_signaled(cursor->fence))
			break;
	} while (true);
}

/**
 * dma_resv_iter_first_unlocked - first fence in an unlocked dma_resv obj.
 * @cursor: the cursor with the current position
 *
 * Returns the first fence from an unlocked dma_resv obj.
 */
struct dma_fence *dma_resv_iter_first_unlocked(struct dma_resv_iter *cursor)
{
	rcu_read_lock();
	do {
		dma_resv_iter_restart_unlocked(cursor);
		dma_resv_iter_walk_unlocked(cursor);
	} while (read_seqcount_retry(&cursor->obj->seq, cursor->seq));
	rcu_read_unlock();

	return cursor->fence;
}
EXPORT_SYMBOL(dma_resv_iter_first_unlocked);

/**
 * dma_resv_iter_next_unlocked - next fence in an unlocked dma_resv obj.
 * @cursor: the cursor with the current position
 *
 * Returns the next fence from an unlocked dma_resv obj.
 */
struct dma_fence *dma_resv_iter_next_unlocked(struct dma_resv_iter *cursor)
{
	bool restart;

	rcu_read_lock();
	cursor->is_restarted = false;
	restart = read_seqcount_retry(&cursor->obj->seq, cursor->seq);
	do {
		if (restart)
			dma_resv_iter_restart_unlocked(cursor);
		dma_resv_iter_walk_unlocked(cursor);
		restart = true;
	} while (read_seqcount_retry(&cursor->obj->seq, cursor->seq));
	rcu_read_unlock();

	return cursor->fence;
}
EXPORT_SYMBOL(dma_resv_iter_next_unlocked);

/**
 * dma_resv_iter_first - first fence from a locked dma_resv object
 * @cursor: cursor to record the current position
 *
 * Return the first fence in the dma_resv object while holding the
 * &dma_resv.lock.
 */
struct dma_fence *dma_resv_iter_first(struct dma_resv_iter *cursor)
{
	struct dma_fence *fence;

	dma_resv_assert_held(cursor->obj);

	cursor->index = 0;
	if (cursor->all_fences)
		cursor->fences = dma_resv_shared_list(cursor->obj);
	else
		cursor->fences = NULL;

	fence = dma_resv_excl_fence(cursor->obj);
	if (!fence)
		fence = dma_resv_iter_next(cursor);

	cursor->is_restarted = true;
	return fence;
}
EXPORT_SYMBOL_GPL(dma_resv_iter_first);

/**
 * dma_resv_iter_next - next fence from a locked dma_resv object
 * @cursor: cursor to record the current position
 *
 * Return the next fences from the dma_resv object while holding the
 * &dma_resv.lock.
 */
struct dma_fence *dma_resv_iter_next(struct dma_resv_iter *cursor)
{
	unsigned int idx;

	dma_resv_assert_held(cursor->obj);

	cursor->is_restarted = false;
	if (!cursor->fences || cursor->index >= cursor->fences->shared_count)
		return NULL;

	idx = cursor->index++;
	return rcu_dereference_protected(cursor->fences->shared[idx],
					 dma_resv_held(cursor->obj));
}
EXPORT_SYMBOL_GPL(dma_resv_iter_next);

/**
 * dma_resv_copy_fences - Copy all fences from src to dst.
 * @dst: the destination reservation object
 * @src: the source reservation object
 *
 * Copy all fences from src to dst. dst-lock must be held.
 */
int dma_resv_copy_fences(struct dma_resv *dst, struct dma_resv *src)
{
	struct dma_resv_iter cursor;
	struct dma_resv_list *list;
	struct dma_fence *f, *excl;

	dma_resv_assert_held(dst);

	list = NULL;
	excl = NULL;

	dma_resv_iter_begin(&cursor, src, true);
	dma_resv_for_each_fence_unlocked(&cursor, f) {

		if (dma_resv_iter_is_restarted(&cursor)) {
			dma_resv_list_free(list);
			dma_fence_put(excl);

			if (cursor.shared_count) {
				list = dma_resv_list_alloc(cursor.shared_count);
				if (!list) {
					dma_resv_iter_end(&cursor);
					return -ENOMEM;
				}

				list->shared_count = 0;

			} else {
				list = NULL;
			}
			excl = NULL;
		}

		dma_fence_get(f);
		if (dma_resv_iter_is_exclusive(&cursor))
			excl = f;
		else
			RCU_INIT_POINTER(list->shared[list->shared_count++], f);
	}
	dma_resv_iter_end(&cursor);

	write_seqcount_begin(&dst->seq);
	excl = rcu_replace_pointer(dst->fence_excl, excl, dma_resv_held(dst));
	list = rcu_replace_pointer(dst->fence, list, dma_resv_held(dst));
	write_seqcount_end(&dst->seq);

	dma_resv_list_free(list);
	dma_fence_put(excl);

	return 0;
}
EXPORT_SYMBOL(dma_resv_copy_fences);

/**
 * dma_resv_get_fences - Get an object's shared and exclusive
 * fences without update side lock held
 * @obj: the reservation object
 * @fence_excl: the returned exclusive fence (or NULL)
 * @shared_count: the number of shared fences returned
 * @shared: the array of shared fence ptrs returned (array is krealloc'd to
 * the required size, and must be freed by caller)
 *
 * Retrieve all fences from the reservation object. If the pointer for the
 * exclusive fence is not specified the fence is put into the array of the
 * shared fences as well. Returns either zero or -ENOMEM.
 */
int dma_resv_get_fences(struct dma_resv *obj, struct dma_fence **fence_excl,
			unsigned int *shared_count, struct dma_fence ***shared)
{
	struct dma_resv_iter cursor;
	struct dma_fence *fence;

	*shared_count = 0;
	*shared = NULL;

	if (fence_excl)
		*fence_excl = NULL;

	dma_resv_iter_begin(&cursor, obj, true);
	dma_resv_for_each_fence_unlocked(&cursor, fence) {

		if (dma_resv_iter_is_restarted(&cursor)) {
			unsigned int count;

			while (*shared_count)
				dma_fence_put((*shared)[--(*shared_count)]);

			if (fence_excl)
				dma_fence_put(*fence_excl);

			count = cursor.shared_count;
			count += fence_excl ? 0 : 1;

			/* Eventually re-allocate the array */
			*shared = krealloc_array(*shared, count,
						 sizeof(void *),
						 GFP_KERNEL);
			if (count && !*shared) {
				dma_resv_iter_end(&cursor);
				return -ENOMEM;
			}
		}

		dma_fence_get(fence);
		if (dma_resv_iter_is_exclusive(&cursor) && fence_excl)
			*fence_excl = fence;
		else
			(*shared)[(*shared_count)++] = fence;
	}
	dma_resv_iter_end(&cursor);

	return 0;
}
EXPORT_SYMBOL_GPL(dma_resv_get_fences);

/**
 * dma_resv_wait_timeout - Wait on reservation's objects
 * shared and/or exclusive fences.
 * @obj: the reservation object
 * @wait_all: if true, wait on all fences, else wait on just exclusive fence
 * @intr: if true, do interruptible wait
 * @timeout: timeout value in jiffies or zero to return immediately
 *
 * Callers are not required to hold specific locks, but maybe hold
 * dma_resv_lock() already
 * RETURNS
 * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or
 * greater than zer on success.
 */
long dma_resv_wait_timeout(struct dma_resv *obj, bool wait_all, bool intr,
			   unsigned long timeout)
{
	long ret = timeout ? timeout : 1;
	struct dma_resv_iter cursor;
	struct dma_fence *fence;

	dma_resv_iter_begin(&cursor, obj, wait_all);
	dma_resv_for_each_fence_unlocked(&cursor, fence) {

		ret = dma_fence_wait_timeout(fence, intr, ret);
		if (ret <= 0) {
			dma_resv_iter_end(&cursor);
			return ret;
		}
	}
	dma_resv_iter_end(&cursor);

	return ret;
}
EXPORT_SYMBOL_GPL(dma_resv_wait_timeout);


/**
 * dma_resv_test_signaled - Test if a reservation object's fences have been
 * signaled.
 * @obj: the reservation object
 * @test_all: if true, test all fences, otherwise only test the exclusive
 * fence
 *
 * Callers are not required to hold specific locks, but maybe hold
 * dma_resv_lock() already.
 *
 * RETURNS
 *
 * True if all fences signaled, else false.
 */
bool dma_resv_test_signaled(struct dma_resv *obj, bool test_all)
{
	struct dma_resv_iter cursor;
	struct dma_fence *fence;

	dma_resv_iter_begin(&cursor, obj, test_all);
	dma_resv_for_each_fence_unlocked(&cursor, fence) {
		dma_resv_iter_end(&cursor);
		return false;
	}
	dma_resv_iter_end(&cursor);
	return true;
}
EXPORT_SYMBOL_GPL(dma_resv_test_signaled);

#if IS_ENABLED(CONFIG_LOCKDEP)
static int __init dma_resv_lockdep(void)
{
	struct mm_struct *mm = mm_alloc();
	struct ww_acquire_ctx ctx;
	struct dma_resv obj;
	struct address_space mapping;
	int ret;

	if (!mm)
		return -ENOMEM;

	dma_resv_init(&obj);
	address_space_init_once(&mapping);

	mmap_read_lock(mm);
	ww_acquire_init(&ctx, &reservation_ww_class);
	ret = dma_resv_lock(&obj, &ctx);
	if (ret == -EDEADLK)
		dma_resv_lock_slow(&obj, &ctx);
	fs_reclaim_acquire(GFP_KERNEL);
	/* for unmap_mapping_range on trylocked buffer objects in shrinkers */
	i_mmap_lock_write(&mapping);
	i_mmap_unlock_write(&mapping);
#ifdef CONFIG_MMU_NOTIFIER
	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
	__dma_fence_might_wait();
	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
#else
	__dma_fence_might_wait();
#endif
	fs_reclaim_release(GFP_KERNEL);
	ww_mutex_unlock(&obj.lock);
	ww_acquire_fini(&ctx);
	mmap_read_unlock(mm);

	mmput(mm);

	return 0;
}
subsys_initcall(dma_resv_lockdep);
#endif
back to top