swh:1:snp:49cd9498d6cccc5e78252c27dcb645bcf7bf0c91
Raw File
Tip revision: 94a05509a9e11806acd797153d03019706e466f1 authored by Linus Torvalds on 15 April 2007, 23:50:57 UTC
Linux 2.6.21-rc7
Tip revision: 94a0550
ds2490.c
/*
 *	dscore.c
 *
 * Copyright (c) 2004 Evgeniy Polyakov <johnpol@2ka.mipt.ru>
 *
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mod_devicetable.h>
#include <linux/usb.h>

#include "../w1_int.h"
#include "../w1.h"

/* COMMAND TYPE CODES */
#define CONTROL_CMD			0x00
#define COMM_CMD			0x01
#define MODE_CMD			0x02

/* CONTROL COMMAND CODES */
#define CTL_RESET_DEVICE		0x0000
#define CTL_START_EXE			0x0001
#define CTL_RESUME_EXE			0x0002
#define CTL_HALT_EXE_IDLE		0x0003
#define CTL_HALT_EXE_DONE		0x0004
#define CTL_FLUSH_COMM_CMDS		0x0007
#define CTL_FLUSH_RCV_BUFFER		0x0008
#define CTL_FLUSH_XMT_BUFFER		0x0009
#define CTL_GET_COMM_CMDS		0x000A

/* MODE COMMAND CODES */
#define MOD_PULSE_EN			0x0000
#define MOD_SPEED_CHANGE_EN		0x0001
#define MOD_1WIRE_SPEED			0x0002
#define MOD_STRONG_PU_DURATION		0x0003
#define MOD_PULLDOWN_SLEWRATE		0x0004
#define MOD_PROG_PULSE_DURATION		0x0005
#define MOD_WRITE1_LOWTIME		0x0006
#define MOD_DSOW0_TREC			0x0007

/* COMMUNICATION COMMAND CODES */
#define COMM_ERROR_ESCAPE		0x0601
#define COMM_SET_DURATION		0x0012
#define COMM_BIT_IO			0x0020
#define COMM_PULSE			0x0030
#define COMM_1_WIRE_RESET		0x0042
#define COMM_BYTE_IO			0x0052
#define COMM_MATCH_ACCESS		0x0064
#define COMM_BLOCK_IO			0x0074
#define COMM_READ_STRAIGHT		0x0080
#define COMM_DO_RELEASE			0x6092
#define COMM_SET_PATH			0x00A2
#define COMM_WRITE_SRAM_PAGE		0x00B2
#define COMM_WRITE_EPROM		0x00C4
#define COMM_READ_CRC_PROT_PAGE		0x00D4
#define COMM_READ_REDIRECT_PAGE_CRC	0x21E4
#define COMM_SEARCH_ACCESS		0x00F4

/* Communication command bits */
#define COMM_TYPE			0x0008
#define COMM_SE				0x0008
#define COMM_D				0x0008
#define COMM_Z				0x0008
#define COMM_CH				0x0008
#define COMM_SM				0x0008
#define COMM_R				0x0008
#define COMM_IM				0x0001

#define COMM_PS				0x4000
#define COMM_PST			0x4000
#define COMM_CIB			0x4000
#define COMM_RTS			0x4000
#define COMM_DT				0x2000
#define COMM_SPU			0x1000
#define COMM_F				0x0800
#define COMM_NTP			0x0400
#define COMM_ICP			0x0200
#define COMM_RST			0x0100

#define PULSE_PROG			0x01
#define PULSE_SPUE			0x02

#define BRANCH_MAIN			0xCC
#define BRANCH_AUX			0x33

/*
 * Duration of the strong pull-up pulse in milliseconds.
 */
#define PULLUP_PULSE_DURATION		750

/* Status flags */
#define ST_SPUA				0x01  /* Strong Pull-up is active */
#define ST_PRGA				0x02  /* 12V programming pulse is being generated */
#define ST_12VP				0x04  /* external 12V programming voltage is present */
#define ST_PMOD				0x08  /* DS2490 powered from USB and external sources */
#define ST_HALT				0x10  /* DS2490 is currently halted */
#define ST_IDLE				0x20  /* DS2490 is currently idle */
#define ST_EPOF				0x80

#define SPEED_NORMAL			0x00
#define SPEED_FLEXIBLE			0x01
#define SPEED_OVERDRIVE			0x02

#define NUM_EP				4
#define EP_CONTROL			0
#define EP_STATUS			1
#define EP_DATA_OUT			2
#define EP_DATA_IN			3

struct ds_device
{
	struct list_head	ds_entry;

	struct usb_device	*udev;
	struct usb_interface	*intf;

	int			ep[NUM_EP];

	struct w1_bus_master	master;
};

struct ds_status
{
	u8			enable;
	u8			speed;
	u8			pullup_dur;
	u8			ppuls_dur;
	u8			pulldown_slew;
	u8			write1_time;
	u8			write0_time;
	u8			reserved0;
	u8			status;
	u8			command0;
	u8			command1;
	u8			command_buffer_status;
	u8			data_out_buffer_status;
	u8			data_in_buffer_status;
	u8			reserved1;
	u8			reserved2;

};

static struct usb_device_id ds_id_table [] = {
	{ USB_DEVICE(0x04fa, 0x2490) },
	{ },
};
MODULE_DEVICE_TABLE(usb, ds_id_table);

static int ds_probe(struct usb_interface *, const struct usb_device_id *);
static void ds_disconnect(struct usb_interface *);

static inline void ds_dump_status(unsigned char *, unsigned char *, int);
static int ds_send_control(struct ds_device *, u16, u16);
static int ds_send_control_cmd(struct ds_device *, u16, u16);

static LIST_HEAD(ds_devices);
static DEFINE_MUTEX(ds_mutex);

static struct usb_driver ds_driver = {
	.name =		"DS9490R",
	.probe =	ds_probe,
	.disconnect =	ds_disconnect,
	.id_table =	ds_id_table,
};

static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
{
	int err;

	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
			CONTROL_CMD, 0x40, value, index, NULL, 0, 1000);
	if (err < 0) {
		printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n",
				value, index, err);
		return err;
	}

	return err;
}
#if 0
static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
{
	int err;

	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
			MODE_CMD, 0x40, value, index, NULL, 0, 1000);
	if (err < 0) {
		printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n",
				value, index, err);
		return err;
	}

	return err;
}
#endif
static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
{
	int err;

	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
			COMM_CMD, 0x40, value, index, NULL, 0, 1000);
	if (err < 0) {
		printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n",
				value, index, err);
		return err;
	}

	return err;
}

static inline void ds_dump_status(unsigned char *buf, unsigned char *str, int off)
{
	printk("%45s: %8x\n", str, buf[off]);
}

static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
				 unsigned char *buf, int size)
{
	int count, err;

	memset(st, 0, sizeof(st));

	count = 0;
	err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_STATUS]), buf, size, &count, 100);
	if (err < 0) {
		printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err);
		return err;
	}

	if (count >= sizeof(*st))
		memcpy(st, buf, sizeof(*st));

	return count;
}

static int ds_recv_status(struct ds_device *dev, struct ds_status *st)
{
	unsigned char buf[64];
	int count, err = 0, i;

	memcpy(st, buf, sizeof(*st));

	count = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
	if (count < 0)
		return err;

	printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
	for (i=0; i<count; ++i)
		printk("%02x ", buf[i]);
	printk("\n");

	if (count >= 16) {
		ds_dump_status(buf, "enable flag", 0);
		ds_dump_status(buf, "1-wire speed", 1);
		ds_dump_status(buf, "strong pullup duration", 2);
		ds_dump_status(buf, "programming pulse duration", 3);
		ds_dump_status(buf, "pulldown slew rate control", 4);
		ds_dump_status(buf, "write-1 low time", 5);
		ds_dump_status(buf, "data sample offset/write-0 recovery time", 6);
		ds_dump_status(buf, "reserved (test register)", 7);
		ds_dump_status(buf, "device status flags", 8);
		ds_dump_status(buf, "communication command byte 1", 9);
		ds_dump_status(buf, "communication command byte 2", 10);
		ds_dump_status(buf, "communication command buffer status", 11);
		ds_dump_status(buf, "1-wire data output buffer status", 12);
		ds_dump_status(buf, "1-wire data input buffer status", 13);
		ds_dump_status(buf, "reserved", 14);
		ds_dump_status(buf, "reserved", 15);
	}

	memcpy(st, buf, sizeof(*st));

	if (st->status & ST_EPOF) {
		printk(KERN_INFO "Resetting device after ST_EPOF.\n");
		err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
		if (err)
			return err;
		count = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
		if (count < 0)
			return err;
	}
#if 0
	if (st->status & ST_IDLE) {
		printk(KERN_INFO "Resetting pulse after ST_IDLE.\n");
		err = ds_start_pulse(dev, PULLUP_PULSE_DURATION);
		if (err)
			return err;
	}
#endif

	return err;
}

static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
{
	int count, err;
	struct ds_status st;

	count = 0;
	err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
				buf, size, &count, 1000);
	if (err < 0) {
		printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
		usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
		ds_recv_status(dev, &st);
		return err;
	}

#if 0
	{
		int i;

		printk("%s: count=%d: ", __func__, count);
		for (i=0; i<count; ++i)
			printk("%02x ", buf[i]);
		printk("\n");
	}
#endif
	return count;
}

static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
{
	int count, err;

	count = 0;
	err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
	if (err < 0) {
		printk(KERN_ERR "Failed to read 1-wire data from 0x02: err=%d.\n", err);
		return err;
	}

	return err;
}

#if 0

int ds_stop_pulse(struct ds_device *dev, int limit)
{
	struct ds_status st;
	int count = 0, err = 0;
	u8 buf[0x20];

	do {
		err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
		if (err)
			break;
		err = ds_send_control(dev, CTL_RESUME_EXE, 0);
		if (err)
			break;
		err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
		if (err)
			break;

		if ((st.status & ST_SPUA) == 0) {
			err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
			if (err)
				break;
		}
	} while(++count < limit);

	return err;
}

int ds_detect(struct ds_device *dev, struct ds_status *st)
{
	int err;

	err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
	if (err)
		return err;

	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
	if (err)
		return err;

	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
	if (err)
		return err;

	err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
	if (err)
		return err;

	err = ds_recv_status(dev, st);

	return err;
}

#endif  /*  0  */

static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
{
	u8 buf[0x20];
	int err, count = 0;

	do {
		err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
#if 0
		if (err >= 0) {
			int i;
			printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
			for (i=0; i<err; ++i)
				printk("%02x ", buf[i]);
			printk("\n");
		}
#endif
	} while(!(buf[0x08] & 0x20) && !(err < 0) && ++count < 100);


	if (((err > 16) && (buf[0x10] & 0x01)) || count >= 100 || err < 0) {
		ds_recv_status(dev, st);
		return -1;
	} else
		return 0;
}

static int ds_reset(struct ds_device *dev, struct ds_status *st)
{
	int err;

	//err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_F | COMM_IM | COMM_SE, SPEED_FLEXIBLE);
	err = ds_send_control(dev, 0x43, SPEED_NORMAL);
	if (err)
		return err;

	ds_wait_status(dev, st);
#if 0
	if (st->command_buffer_status) {
		printk(KERN_INFO "Short circuit.\n");
		return -EIO;
	}
#endif

	return 0;
}

#if 0
static int ds_set_speed(struct ds_device *dev, int speed)
{
	int err;

	if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
		return -EINVAL;

	if (speed != SPEED_OVERDRIVE)
		speed = SPEED_FLEXIBLE;

	speed &= 0xff;

	err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
	if (err)
		return err;

	return err;
}
#endif  /*  0  */

static int ds_start_pulse(struct ds_device *dev, int delay)
{
	int err;
	u8 del = 1 + (u8)(delay >> 4);
	struct ds_status st;

#if 0
	err = ds_stop_pulse(dev, 10);
	if (err)
		return err;

	err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE);
	if (err)
		return err;
#endif
	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
	if (err)
		return err;

	err = ds_send_control(dev, COMM_PULSE | COMM_IM | COMM_F, 0);
	if (err)
		return err;

	mdelay(delay);

	ds_wait_status(dev, &st);

	return err;
}

static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
{
	int err, count;
	struct ds_status st;
	u16 value = (COMM_BIT_IO | COMM_IM) | ((bit) ? COMM_D : 0);
	u16 cmd;

	err = ds_send_control(dev, value, 0);
	if (err)
		return err;

	count = 0;
	do {
		err = ds_wait_status(dev, &st);
		if (err)
			return err;

		cmd = st.command0 | (st.command1 << 8);
	} while (cmd != value && ++count < 10);

	if (err < 0 || count >= 10) {
		printk(KERN_ERR "Failed to obtain status.\n");
		return -EINVAL;
	}

	err = ds_recv_data(dev, tbit, sizeof(*tbit));
	if (err < 0)
		return err;

	return 0;
}

static int ds_write_bit(struct ds_device *dev, u8 bit)
{
	int err;
	struct ds_status st;

	err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit) ? COMM_D : 0, 0);
	if (err)
		return err;

	ds_wait_status(dev, &st);

	return 0;
}

static int ds_write_byte(struct ds_device *dev, u8 byte)
{
	int err;
	struct ds_status st;
	u8 rbyte;

	err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | COMM_SPU, byte);
	if (err)
		return err;

	err = ds_wait_status(dev, &st);
	if (err)
		return err;

	err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
	if (err < 0)
		return err;

	ds_start_pulse(dev, PULLUP_PULSE_DURATION);

	return !(byte == rbyte);
}

static int ds_read_byte(struct ds_device *dev, u8 *byte)
{
	int err;
	struct ds_status st;

	err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
	if (err)
		return err;

	ds_wait_status(dev, &st);

	err = ds_recv_data(dev, byte, sizeof(*byte));
	if (err < 0)
		return err;

	return 0;
}

static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
{
	struct ds_status st;
	int err;

	if (len > 64*1024)
		return -E2BIG;

	memset(buf, 0xFF, len);

	err = ds_send_data(dev, buf, len);
	if (err < 0)
		return err;

	err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | COMM_SPU, len);
	if (err)
		return err;

	ds_wait_status(dev, &st);

	memset(buf, 0x00, len);
	err = ds_recv_data(dev, buf, len);

	return err;
}

static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
{
	int err;
	struct ds_status st;

	err = ds_send_data(dev, buf, len);
	if (err < 0)
		return err;

	ds_wait_status(dev, &st);

	err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | COMM_SPU, len);
	if (err)
		return err;

	ds_wait_status(dev, &st);

	err = ds_recv_data(dev, buf, len);
	if (err < 0)
		return err;

	ds_start_pulse(dev, PULLUP_PULSE_DURATION);

	return !(err == len);
}

#if 0

static int ds_search(struct ds_device *dev, u64 init, u64 *buf, u8 id_number, int conditional_search)
{
	int err;
	u16 value, index;
	struct ds_status st;

	memset(buf, 0, sizeof(buf));

	err = ds_send_data(ds_dev, (unsigned char *)&init, 8);
	if (err)
		return err;

	ds_wait_status(ds_dev, &st);

	value = COMM_SEARCH_ACCESS | COMM_IM | COMM_SM | COMM_F | COMM_RTS;
	index = (conditional_search ? 0xEC : 0xF0) | (id_number << 8);
	err = ds_send_control(ds_dev, value, index);
	if (err)
		return err;

	ds_wait_status(ds_dev, &st);

	err = ds_recv_data(ds_dev, (unsigned char *)buf, 8*id_number);
	if (err < 0)
		return err;

	return err/8;
}

static int ds_match_access(struct ds_device *dev, u64 init)
{
	int err;
	struct ds_status st;

	err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
	if (err)
		return err;

	ds_wait_status(dev, &st);

	err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
	if (err)
		return err;

	ds_wait_status(dev, &st);

	return 0;
}

static int ds_set_path(struct ds_device *dev, u64 init)
{
	int err;
	struct ds_status st;
	u8 buf[9];

	memcpy(buf, &init, 8);
	buf[8] = BRANCH_MAIN;

	err = ds_send_data(dev, buf, sizeof(buf));
	if (err)
		return err;

	ds_wait_status(dev, &st);

	err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
	if (err)
		return err;

	ds_wait_status(dev, &st);

	return 0;
}

#endif  /*  0  */

static u8 ds9490r_touch_bit(void *data, u8 bit)
{
	u8 ret;
	struct ds_device *dev = data;

	if (ds_touch_bit(dev, bit, &ret))
		return 0;

	return ret;
}

static void ds9490r_write_bit(void *data, u8 bit)
{
	struct ds_device *dev = data;

	ds_write_bit(dev, bit);
}

static void ds9490r_write_byte(void *data, u8 byte)
{
	struct ds_device *dev = data;

	ds_write_byte(dev, byte);
}

static u8 ds9490r_read_bit(void *data)
{
	struct ds_device *dev = data;
	int err;
	u8 bit = 0;

	err = ds_touch_bit(dev, 1, &bit);
	if (err)
		return 0;

	return bit & 1;
}

static u8 ds9490r_read_byte(void *data)
{
	struct ds_device *dev = data;
	int err;
	u8 byte = 0;

	err = ds_read_byte(dev, &byte);
	if (err)
		return 0;

	return byte;
}

static void ds9490r_write_block(void *data, const u8 *buf, int len)
{
	struct ds_device *dev = data;

	ds_write_block(dev, (u8 *)buf, len);
}

static u8 ds9490r_read_block(void *data, u8 *buf, int len)
{
	struct ds_device *dev = data;
	int err;

	err = ds_read_block(dev, buf, len);
	if (err < 0)
		return 0;

	return len;
}

static u8 ds9490r_reset(void *data)
{
	struct ds_device *dev = data;
	struct ds_status st;
	int err;

	memset(&st, 0, sizeof(st));

	err = ds_reset(dev, &st);
	if (err)
		return 1;

	return 0;
}

static int ds_w1_init(struct ds_device *dev)
{
	memset(&dev->master, 0, sizeof(struct w1_bus_master));

	dev->master.data	= dev;
	dev->master.touch_bit	= &ds9490r_touch_bit;
	dev->master.read_bit	= &ds9490r_read_bit;
	dev->master.write_bit	= &ds9490r_write_bit;
	dev->master.read_byte	= &ds9490r_read_byte;
	dev->master.write_byte	= &ds9490r_write_byte;
	dev->master.read_block	= &ds9490r_read_block;
	dev->master.write_block	= &ds9490r_write_block;
	dev->master.reset_bus	= &ds9490r_reset;

	return w1_add_master_device(&dev->master);
}

static void ds_w1_fini(struct ds_device *dev)
{
	w1_remove_master_device(&dev->master);
}

static int ds_probe(struct usb_interface *intf,
		    const struct usb_device_id *udev_id)
{
	struct usb_device *udev = interface_to_usbdev(intf);
	struct usb_endpoint_descriptor *endpoint;
	struct usb_host_interface *iface_desc;
	struct ds_device *dev;
	int i, err;

	dev = kmalloc(sizeof(struct ds_device), GFP_KERNEL);
	if (!dev) {
		printk(KERN_INFO "Failed to allocate new DS9490R structure.\n");
		return -ENOMEM;
	}
	dev->udev = usb_get_dev(udev);
	if (!dev->udev) {
		err = -ENOMEM;
		goto err_out_free;
	}
	memset(dev->ep, 0, sizeof(dev->ep));

	usb_set_intfdata(intf, dev);

	err = usb_set_interface(dev->udev, intf->altsetting[0].desc.bInterfaceNumber, 3);
	if (err) {
		printk(KERN_ERR "Failed to set alternative setting 3 for %d interface: err=%d.\n",
				intf->altsetting[0].desc.bInterfaceNumber, err);
		goto err_out_clear;
	}

	err = usb_reset_configuration(dev->udev);
	if (err) {
		printk(KERN_ERR "Failed to reset configuration: err=%d.\n", err);
		goto err_out_clear;
	}

	iface_desc = &intf->altsetting[0];
	if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
		printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints);
		err = -EINVAL;
		goto err_out_clear;
	}

	/*
	 * This loop doesn'd show control 0 endpoint,
	 * so we will fill only 1-3 endpoints entry.
	 */
	for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
		endpoint = &iface_desc->endpoint[i].desc;

		dev->ep[i+1] = endpoint->bEndpointAddress;
#if 0
		printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
			i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
			(endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
			endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
#endif
	}

	err = ds_w1_init(dev);
	if (err)
		goto err_out_clear;

	mutex_lock(&ds_mutex);
	list_add_tail(&dev->ds_entry, &ds_devices);
	mutex_unlock(&ds_mutex);

	return 0;

err_out_clear:
	usb_set_intfdata(intf, NULL);
	usb_put_dev(dev->udev);
err_out_free:
	kfree(dev);
	return err;
}

static void ds_disconnect(struct usb_interface *intf)
{
	struct ds_device *dev;

	dev = usb_get_intfdata(intf);
	if (!dev)
		return;

	mutex_lock(&ds_mutex);
	list_del(&dev->ds_entry);
	mutex_unlock(&ds_mutex);

	ds_w1_fini(dev);

	usb_set_intfdata(intf, NULL);

	usb_put_dev(dev->udev);
	kfree(dev);
}

static int ds_init(void)
{
	int err;

	err = usb_register(&ds_driver);
	if (err) {
		printk(KERN_INFO "Failed to register DS9490R USB device: err=%d.\n", err);
		return err;
	}

	return 0;
}

static void ds_fini(void)
{
	usb_deregister(&ds_driver);
}

module_init(ds_init);
module_exit(ds_fini);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");
back to top