swh:1:snp:c3bf2749e3476071fa748f67b0ffa2fdc5fe49d9
Raw File
Tip revision: 091438dd5668396328a3419abcbc6591159eb8d1 authored by Linus Torvalds on 30 April 2009, 04:48:16 UTC
Linux 2.6.30-rc4
Tip revision: 091438d
fir.h
/*
 * SpanDSP - a series of DSP components for telephony
 *
 * fir.h - General telephony FIR routines
 *
 * Written by Steve Underwood <steveu@coppice.org>
 *
 * Copyright (C) 2002 Steve Underwood
 *
 * All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*! \page fir_page FIR filtering
\section fir_page_sec_1 What does it do?
???.

\section fir_page_sec_2 How does it work?
???.
*/

#if !defined(_FIR_H_)
#define _FIR_H_

/*
   Blackfin NOTES & IDEAS:

   A simple dot product function is used to implement the filter.  This performs
   just one MAC/cycle which is inefficient but was easy to implement as a first
   pass.  The current Blackfin code also uses an unrolled form of the filter
   history to avoid 0 length hardware loop issues.  This is wasteful of
   memory.

   Ideas for improvement:

   1/ Rewrite filter for dual MAC inner loop.  The issue here is handling
   history sample offsets that are 16 bit aligned - the dual MAC needs
   32 bit aligmnent.  There are some good examples in libbfdsp.

   2/ Use the hardware circular buffer facility tohalve memory usage.

   3/ Consider using internal memory.

   Using less memory might also improve speed as cache misses will be
   reduced. A drop in MIPs and memory approaching 50% should be
   possible.

   The foreground and background filters currenlty use a total of
   about 10 MIPs/ch as measured with speedtest.c on a 256 TAP echo
   can.
*/

#if defined(USE_MMX)  ||  defined(USE_SSE2)
#include "mmx.h"
#endif

/*!
    16 bit integer FIR descriptor. This defines the working state for a single
    instance of an FIR filter using 16 bit integer coefficients.
*/
struct fir16_state_t {
	int taps;
	int curr_pos;
	const int16_t *coeffs;
	int16_t *history;
};

/*!
    32 bit integer FIR descriptor. This defines the working state for a single
    instance of an FIR filter using 32 bit integer coefficients, and filtering
    16 bit integer data.
*/
struct fir32_state_t {
	int taps;
	int curr_pos;
	const int32_t *coeffs;
	int16_t *history;
};

/*!
    Floating point FIR descriptor. This defines the working state for a single
    instance of an FIR filter using floating point coefficients and data.
*/
struct fir_float_state_t {
	int taps;
	int curr_pos;
	const float *coeffs;
	float *history;
};

static inline const int16_t *fir16_create(struct fir16_state_t *fir,
					      const int16_t *coeffs, int taps)
{
	fir->taps = taps;
	fir->curr_pos = taps - 1;
	fir->coeffs = coeffs;
#if defined(USE_MMX)  ||  defined(USE_SSE2) || defined(__bfin__)
	fir->history = kcalloc(2 * taps, sizeof(int16_t), GFP_KERNEL);
#else
	fir->history = kcalloc(taps, sizeof(int16_t), GFP_KERNEL);
#endif
	return fir->history;
}

static inline void fir16_flush(struct fir16_state_t *fir)
{
#if defined(USE_MMX)  ||  defined(USE_SSE2) || defined(__bfin__)
	memset(fir->history, 0, 2 * fir->taps * sizeof(int16_t));
#else
	memset(fir->history, 0, fir->taps * sizeof(int16_t));
#endif
}

static inline void fir16_free(struct fir16_state_t *fir)
{
	kfree(fir->history);
}

#ifdef __bfin__
static inline int32_t dot_asm(short *x, short *y, int len)
{
	int dot;

	len--;

	__asm__("I0 = %1;\n\t"
		"I1 = %2;\n\t"
		"A0 = 0;\n\t"
		"R0.L = W[I0++] || R1.L = W[I1++];\n\t"
		"LOOP dot%= LC0 = %3;\n\t"
		"LOOP_BEGIN dot%=;\n\t"
		"A0 += R0.L * R1.L (IS) || R0.L = W[I0++] || R1.L = W[I1++];\n\t"
		"LOOP_END dot%=;\n\t"
		"A0 += R0.L*R1.L (IS);\n\t"
		"R0 = A0;\n\t"
		"%0 = R0;\n\t"
		: "=&d"(dot)
		: "a"(x), "a"(y), "a"(len)
		: "I0", "I1", "A1", "A0", "R0", "R1"
	);

	return dot;
}
#endif

static inline int16_t fir16(struct fir16_state_t *fir, int16_t sample)
{
	int32_t y;
#if defined(USE_MMX)
	int i;
	union mmx_t *mmx_coeffs;
	union mmx_t *mmx_hist;

	fir->history[fir->curr_pos] = sample;
	fir->history[fir->curr_pos + fir->taps] = sample;

	mmx_coeffs = (union mmx_t *)fir->coeffs;
	mmx_hist = (union mmx_t *)&fir->history[fir->curr_pos];
	i = fir->taps;
	pxor_r2r(mm4, mm4);
	/* 8 samples per iteration, so the filter must be a multiple of 8 long. */
	while (i > 0) {
		movq_m2r(mmx_coeffs[0], mm0);
		movq_m2r(mmx_coeffs[1], mm2);
		movq_m2r(mmx_hist[0], mm1);
		movq_m2r(mmx_hist[1], mm3);
		mmx_coeffs += 2;
		mmx_hist += 2;
		pmaddwd_r2r(mm1, mm0);
		pmaddwd_r2r(mm3, mm2);
		paddd_r2r(mm0, mm4);
		paddd_r2r(mm2, mm4);
		i -= 8;
	}
	movq_r2r(mm4, mm0);
	psrlq_i2r(32, mm0);
	paddd_r2r(mm0, mm4);
	movd_r2m(mm4, y);
	emms();
#elif defined(USE_SSE2)
	int i;
	union xmm_t *xmm_coeffs;
	union xmm_t *xmm_hist;

	fir->history[fir->curr_pos] = sample;
	fir->history[fir->curr_pos + fir->taps] = sample;

	xmm_coeffs = (union xmm_t *)fir->coeffs;
	xmm_hist = (union xmm_t *)&fir->history[fir->curr_pos];
	i = fir->taps;
	pxor_r2r(xmm4, xmm4);
	/* 16 samples per iteration, so the filter must be a multiple of 16 long. */
	while (i > 0) {
		movdqu_m2r(xmm_coeffs[0], xmm0);
		movdqu_m2r(xmm_coeffs[1], xmm2);
		movdqu_m2r(xmm_hist[0], xmm1);
		movdqu_m2r(xmm_hist[1], xmm3);
		xmm_coeffs += 2;
		xmm_hist += 2;
		pmaddwd_r2r(xmm1, xmm0);
		pmaddwd_r2r(xmm3, xmm2);
		paddd_r2r(xmm0, xmm4);
		paddd_r2r(xmm2, xmm4);
		i -= 16;
	}
	movdqa_r2r(xmm4, xmm0);
	psrldq_i2r(8, xmm0);
	paddd_r2r(xmm0, xmm4);
	movdqa_r2r(xmm4, xmm0);
	psrldq_i2r(4, xmm0);
	paddd_r2r(xmm0, xmm4);
	movd_r2m(xmm4, y);
#elif defined(__bfin__)
	fir->history[fir->curr_pos] = sample;
	fir->history[fir->curr_pos + fir->taps] = sample;
	y = dot_asm((int16_t *) fir->coeffs, &fir->history[fir->curr_pos],
		    fir->taps);
#else
	int i;
	int offset1;
	int offset2;

	fir->history[fir->curr_pos] = sample;

	offset2 = fir->curr_pos;
	offset1 = fir->taps - offset2;
	y = 0;
	for (i = fir->taps - 1; i >= offset1; i--)
		y += fir->coeffs[i] * fir->history[i - offset1];
	for (; i >= 0; i--)
		y += fir->coeffs[i] * fir->history[i + offset2];
#endif
	if (fir->curr_pos <= 0)
		fir->curr_pos = fir->taps;
	fir->curr_pos--;
	return (int16_t) (y >> 15);
}

static inline const int16_t *fir32_create(struct fir32_state_t *fir,
					      const int32_t *coeffs, int taps)
{
	fir->taps = taps;
	fir->curr_pos = taps - 1;
	fir->coeffs = coeffs;
	fir->history = kcalloc(taps, sizeof(int16_t), GFP_KERNEL);
	return fir->history;
}

static inline void fir32_flush(struct fir32_state_t *fir)
{
	memset(fir->history, 0, fir->taps * sizeof(int16_t));
}

static inline void fir32_free(struct fir32_state_t *fir)
{
	kfree(fir->history);
}

static inline int16_t fir32(struct fir32_state_t *fir, int16_t sample)
{
	int i;
	int32_t y;
	int offset1;
	int offset2;

	fir->history[fir->curr_pos] = sample;
	offset2 = fir->curr_pos;
	offset1 = fir->taps - offset2;
	y = 0;
	for (i = fir->taps - 1; i >= offset1; i--)
		y += fir->coeffs[i] * fir->history[i - offset1];
	for (; i >= 0; i--)
		y += fir->coeffs[i] * fir->history[i + offset2];
	if (fir->curr_pos <= 0)
		fir->curr_pos = fir->taps;
	fir->curr_pos--;
	return (int16_t) (y >> 15);
}

#endif
/*- End of file ------------------------------------------------------------*/
back to top