swh:1:snp:d1587d616651317fdcebcbb237dce82c32266449
Raw File
Tip revision: dfe6577bb164f53feaedf2da9530457197edfb1a authored by Georgi N. Boshnakov on 20 October 2022, 11:25:10 UTC
version 4021.93
Tip revision: dfe6577
dist-DistributionFits.Rd
\name{DistributionFits}
\alias{DistributionFits}

\alias{nFit}
\alias{tFit}

\alias{stableFit}

\title{Parametric fit of a distribution}


\description{

    A collection and description of moment and maximum 
    likelihood estimators to fit the parameters of a 
    distribution. 
    \cr

    The functions are:
    
    \tabular{ll}{
    \code{nFit} \tab MLE parameter fit for a normal distribution, \cr
    \code{tFit} \tab MLE parameter fit for a Student t-distribution, \cr
    \code{stableFit} \tab MLE and Quantile Method stable parameter fit. }

}


\usage{
nFit(x, doplot = TRUE, span = "auto", title = NULL, description = NULL, \dots)

tFit(x, df = 4, doplot = TRUE, span = "auto", trace = FALSE, title = NULL, 
    description = NULL, \dots)
    
stableFit(x, alpha = 1.75, beta = 0, gamma = 1, delta = 0, 
    type = c("q", "mle"), doplot = TRUE, control = list(),
    trace = FALSE, title = NULL, description = NULL) 
}


\arguments{
  
    \item{x}{
        a numeric vector. 
        }
    \item{doplot}{
        a logical flag. Should a plot be displayed?
        }
    \item{span}{
        x-coordinates for the plot, by default 100 values 
        automatically selected and ranging between the 0.001, 
        and 0.999 quantiles. Alternatively, you can specify
        the range by an expression like \code{span=seq(min, max,
        times = n)}, where, \code{min} and \code{max} are the 
        left and right endpoints of the range, and \code{n} gives 
        the number of the intermediate points.
        }
    \item{control}{
        [stableFit] - \cr
        a list of control parameters, see function \code{nlminb}.
        }
    \item{alpha, beta, gamma, delta}{
        [stable] - \cr
        The parameters are \code{alpha}, \code{beta}, \code{gamma}, 
        and \code{delta}:\cr
        value of the index parameter \code{alpha} with \code{alpha = (0,2]};
        skewness parameter \code{beta}, in the range [-1, 1];
        scale parameter \code{gamma}; and
        shift parameter \code{delta}.
        }
    \item{description}{
        a character string which allows for a brief description.
        }
    \item{df}{
        the number of degrees of freedom for the Student distribution, 
        \code{df > 2}, maybe non-integer. By default a value of 4 is
        assumed.
        }
    \item{title}{
        a character string which allows for a project title.
        }
    \item{trace}{
        a logical flag. Should the parameter estimation process be
        traced?
        }
    \item{type}{
        a character string which allows to select the method for
        parameter estimation: \code{"mle"}, the maximum log likelihood
        approach, or \code{"qm"}, McCulloch's quantile method.
        }
    \item{\dots}{
        parameters to be parsed.
        }

}


\value{
  an object from class \code{"fDISTFIT"}
}
              
\details{
    
    \bold{Stable Parameter Estimation:}
    
    Estimation techniques based on the quantiles of an empirical sample 
    were first suggested by Fama and Roll [1971]. However their technique 
    was limited to symmetric distributions and suffered from a small 
    asymptotic bias. McCulloch [1986] developed a technique that uses 
    five quantiles from a sample to estimate \code{alpha} and \code{beta}
    without asymptotic bias. Unfortunately, the estimators provided by
    McCulloch have restriction \code{alpha>0.6}.

    \emph{Remark:} The parameter estimation for the stable distribution
    via the maximum Log-Likelihood approach may take a quite long time.
    
}


\examples{    
## nFit -
   # Simulate random normal variates N(0.5, 2.0):
   set.seed(1953)
   s = rnorm(n = 1000, 0.5, 2) 

## nigFit -  
   # Fit Parameters:
   nFit(s, doplot = TRUE) 
}


\keyword{distribution}
back to top