Raw File
# Copyright (c) Microsoft. All rights reserved.

# Licensed under the MIT license. See LICENSE.md file in the project root
# for full license information.
# ==============================================================================

from argparse import ArgumentParser

import gym
import numpy as np
from cntk.core import Value
from cntk.initializer import he_uniform
from cntk.layers import Sequential, Convolution2D, Dense, default_options
from cntk.layers.typing import Signature, Tensor
from cntk.learners import adam, learning_parameter_schedule, momentum_schedule
from cntk.logging import TensorBoardProgressWriter
from cntk.ops import abs, argmax, element_select, less, relu, reduce_max, reduce_sum, square
from cntk.ops.functions import CloneMethod, Function
from cntk.train import Trainer


class ReplayMemory(object):
    """
    ReplayMemory keeps track of the environment dynamic.
    We store all the transitions (s(t), action, s(t+1), reward, done).
    The replay memory allows us to efficiently sample minibatches from it, and generate the correct state representation
    (w.r.t the number of previous frames needed).
    """
    def __init__(self, size, sample_shape, history_length=4):
        self._pos = 0
        self._count = 0
        self._max_size = size
        self._history_length = max(1, history_length)
        self._state_shape = sample_shape
        self._states = np.zeros((size,) + sample_shape, dtype=np.float32)
        self._actions = np.zeros(size, dtype=np.uint8)
        self._rewards = np.zeros(size, dtype=np.float32)
        self._terminals = np.zeros(size, dtype=np.float32)

    def __len__(self):
        """ Returns the number of items currently present in the memory
        Returns: Int >= 0
        """
        return self._count

    def append(self, state, action, reward, done):
        """ Appends the specified transition to the memory.

        Attributes:
            state (Tensor[sample_shape]): The state to append
            action (int): An integer representing the action done
            reward (float): An integer representing the reward received for doing this action
            done (bool): A boolean specifying if this state is a terminal (episode has finished)
        """
        assert state.shape == self._state_shape, \
            'Invalid state shape (required: %s, got: %s)' % (self._state_shape, state.shape)

        self._states[self._pos] = state
        self._actions[self._pos] = action
        self._rewards[self._pos] = reward
        self._terminals[self._pos] = done

        self._count = max(self._count, self._pos + 1)
        self._pos = (self._pos + 1) % self._max_size

    def sample(self, size):
        """ Generate size random integers mapping indices in the memory.
            The returned indices can be retrieved using #get_state().
            See the method #minibatch() if you want to retrieve samples directly.

        Attributes:
            size (int): The minibatch size

        Returns:
             Indexes of the sampled states ([int])
        """

        # Local variable access is faster in loops
        count, pos, history_len, terminals = self._count - 1, self._pos, \
                                             self._history_length, self._terminals
        indexes = []

        while len(indexes) < size:
            index = np.random.randint(history_len, count)

            if index not in indexes:

                # if not wrapping over current pointer,
                # then check if there is terminal state wrapped inside
                if not (index >= pos > index - history_len):
                    if not terminals[(index - history_len):index].any():
                        indexes.append(index)

        return indexes

    def minibatch(self, size):
        """ Generate a minibatch with the number of samples specified by the size parameter.

        Attributes:
            size (int): Minibatch size

        Returns:
            tuple: Tensor[minibatch_size, input_shape...], [int], [float], [bool]
        """
        indexes = self.sample(size)

        pre_states = np.array([self.get_state(index) for index in indexes], dtype=np.float32)
        post_states = np.array([self.get_state(index + 1) for index in indexes], dtype=np.float32)
        actions = self._actions[indexes]
        rewards = self._rewards[indexes]
        dones = self._terminals[indexes]

        return pre_states, actions, post_states, rewards, dones

    def get_state(self, index):
        """
        Return the specified state with the replay memory. A state consists of
        the last `history_length` perceptions.

        Attributes:
            index (int): State's index

        Returns:
            State at specified index (Tensor[history_length, input_shape...])
        """
        if self._count == 0:
            raise IndexError('Empty Memory')

        index %= self._count
        history_length = self._history_length

        # If index > history_length, take from a slice
        if index >= history_length:
            return self._states[(index - (history_length - 1)):index + 1, ...]
        else:
            indexes = np.arange(index - history_length + 1, index + 1)
            return self._states.take(indexes, mode='wrap', axis=0)


class History(object):
    """
    Accumulator keeping track of the N previous frames to be used by the agent
    for evaluation
    """

    def __init__(self, shape):
        self._buffer = np.zeros(shape, dtype=np.float32)

    @property
    def value(self):
        """ Underlying buffer with N previous states stacked along first axis

        Returns:
            Tensor[shape]
        """
        return self._buffer

    def append(self, state):
        """ Append state to the history

        Attributes:
            state (Tensor) : The state to append to the memory
        """
        self._buffer[:-1] = self._buffer[1:]
        self._buffer[-1] = state

    def reset(self):
        """ Reset the memory. Underlying buffer set all indexes to 0

        """
        self._buffer.fill(0)


class LinearEpsilonAnnealingExplorer(object):
    """
    Exploration policy using Linear Epsilon Greedy

    Attributes:
        start (float): start value
        end (float): end value
        steps (int): number of steps between start and end
    """

    def __init__(self, start, end, steps):
        self._start = start
        self._stop = end
        self._steps = steps

        self._step_size = (end - start) / steps

    def __call__(self, num_actions):
        """
        Select a random action out of `num_actions` possibilities.

        Attributes:
            num_actions (int): Number of actions available
        """
        return np.random.choice(num_actions)

    def _epsilon(self, step):
        """ Compute the epsilon parameter according to the specified step

        Attributes:
            step (int)
        """
        if step < 0:
            return self._start
        elif step > self._steps:
            return self._stop
        else:
            return self._step_size * step + self._start

    def is_exploring(self, step):
        """ Commodity method indicating if the agent should explore

        Attributes:
            step (int) : Current step

        Returns:
             bool : True if exploring, False otherwise
        """
        return np.random.rand() < self._epsilon(step)


def huber_loss(y, y_hat, delta):
    """ Compute the Huber Loss as part of the model graph

    Huber Loss is more robust to outliers. It is defined as:
     if |y - y_hat| < delta :
        0.5 * (y - y_hat)**2
    else :
        delta * |y - y_hat| - 0.5 * delta**2

    Attributes:
        y (Tensor[-1, 1]): Target value
        y_hat(Tensor[-1, 1]): Estimated value
        delta (float): Outliers threshold

    Returns:
        CNTK Graph Node
    """
    half_delta_squared = 0.5 * delta * delta
    error = y - y_hat
    abs_error = abs(error)

    less_than = 0.5 * square(error)
    more_than = (delta * abs_error) - half_delta_squared
    loss_per_sample = element_select(less(abs_error, delta), less_than, more_than)

    return reduce_sum(loss_per_sample, name='loss')


class DeepQAgent(object):
    """
    Implementation of Deep Q Neural Network agent like in:
        Nature 518. "Human-level control through deep reinforcement learning" (Mnih & al. 2015)
    """
    def __init__(self, input_shape, nb_actions,
                 gamma=0.99, explorer=LinearEpsilonAnnealingExplorer(1, 0.1, 1000000),
                 learning_rate=0.00025, momentum=0.95, minibatch_size=32,
                 memory_size=500000, train_after=200000, train_interval=4, target_update_interval=10000,
                 monitor=True):
        self.input_shape = input_shape
        self.nb_actions = nb_actions
        self.gamma = gamma

        self._train_after = train_after
        self._train_interval = train_interval
        self._target_update_interval = target_update_interval

        self._explorer = explorer
        self._minibatch_size = minibatch_size
        self._history = History(input_shape)
        self._memory = ReplayMemory(memory_size, input_shape[1:], 4)
        self._num_actions_taken = 0

        # Metrics accumulator
        self._episode_rewards, self._episode_q_means, self._episode_q_stddev = [], [], []

        # Action Value model (used by agent to interact with the environment)
        with default_options(activation=relu, init=he_uniform()):
            self._action_value_net = Sequential([
                Convolution2D((8, 8), 16, strides=4),
                Convolution2D((4, 4), 32, strides=2),
                Convolution2D((3, 3), 32, strides=1),
                Dense(256, init=he_uniform(scale=0.01)),
                Dense(nb_actions, activation=None, init=he_uniform(scale=0.01))
            ])
        self._action_value_net.update_signature(Tensor[input_shape])

        # Target model used to compute the target Q-values in training, updated
        # less frequently for increased stability.
        self._target_net = self._action_value_net.clone(CloneMethod.freeze)

        # Function computing Q-values targets as part of the computation graph
        @Function
        @Signature(post_states=Tensor[input_shape], rewards=Tensor[()], terminals=Tensor[()])
        def compute_q_targets(post_states, rewards, terminals):
            return element_select(
                terminals,
                rewards,
                gamma * reduce_max(self._target_net(post_states), axis=0) + rewards,
            )

        # Define the loss, using Huber Loss (more robust to outliers)
        @Function
        @Signature(pre_states=Tensor[input_shape], actions=Tensor[nb_actions],
                   post_states=Tensor[input_shape], rewards=Tensor[()], terminals=Tensor[()])
        def criterion(pre_states, actions, post_states, rewards, terminals):
            # Compute the q_targets
            q_targets = compute_q_targets(post_states, rewards, terminals)

            # actions is a 1-hot encoding of the action done by the agent
            q_acted = reduce_sum(self._action_value_net(pre_states) * actions, axis=0)

            # Define training criterion as the Huber Loss function
            return huber_loss(q_targets, q_acted, 1.0)

        # Adam based SGD
        lr_schedule = learning_parameter_schedule(learning_rate)
        m_schedule = momentum_schedule(momentum)
        vm_schedule = momentum_schedule(0.999)
        l_sgd = adam(self._action_value_net.parameters, lr_schedule,
                     momentum=m_schedule, variance_momentum=vm_schedule)

        self._metrics_writer = TensorBoardProgressWriter(freq=1, log_dir='metrics', model=criterion) if monitor else None
        self._learner = l_sgd
        self._trainer = Trainer(criterion, (criterion, None), l_sgd, self._metrics_writer)

    def act(self, state):
        """ This allows the agent to select the next action to perform in regard of the current state of the environment.
        It follows the terminology used in the Nature paper.

        Attributes:
            state (Tensor[input_shape]): The current environment state

        Returns: Int >= 0 : Next action to do
        """
        # Append the state to the short term memory (ie. History)
        self._history.append(state)

        # If policy requires agent to explore, sample random action
        if self._explorer.is_exploring(self._num_actions_taken):
            action = self._explorer(self.nb_actions)
        else:
            # Use the network to output the best action
            env_with_history = self._history.value
            q_values = self._action_value_net.eval(
                # Append batch axis with only one sample to evaluate
                env_with_history.reshape((1,) + env_with_history.shape)
            )

            self._episode_q_means.append(np.mean(q_values))
            self._episode_q_stddev.append(np.std(q_values))

            # Return the value maximizing the expected reward
            action = q_values.argmax()

        # Keep track of interval action counter
        self._num_actions_taken += 1
        return action

    def observe(self, old_state, action, reward, done):
        """ This allows the agent to observe the output of doing the action it selected through act() on the old_state

        Attributes:
            old_state (Tensor[input_shape]): Previous environment state
            action (int): Action done by the agent
            reward (float): Reward for doing this action in the old_state environment
            done (bool): Indicate if the action has terminated the environment
        """
        self._episode_rewards.append(reward)

        # If done, reset short term memory (ie. History)
        if done:
            # Plot the metrics through Tensorboard and reset buffers
            if self._metrics_writer is not None:
                self._plot_metrics()
            self._episode_rewards, self._episode_q_means, self._episode_q_stddev = [], [], []

            # Reset the short term memory
            self._history.reset()

        # Append to long term memory
        self._memory.append(old_state, action, reward, done)

    def train(self):
        """ This allows the agent to train itself to better understand the environment dynamics.
        The agent will compute the expected reward for the state(t+1)
        and update the expected reward at step t according to this.

        The target expectation is computed through the Target Network, which is a more stable version
        of the Action Value Network for increasing training stability.

        The Target Network is a frozen copy of the Action Value Network updated as regular intervals.
        """

        agent_step = self._num_actions_taken

        if agent_step >= self._train_after:
            if (agent_step % self._train_interval) == 0:
                pre_states, actions, post_states, rewards, terminals = self._memory.minibatch(self._minibatch_size)

                self._trainer.train_minibatch(
                    self._trainer.loss_function.argument_map(
                        pre_states=pre_states,
                        actions=Value.one_hot(actions.reshape(-1, 1).tolist(), self.nb_actions),
                        post_states=post_states,
                        rewards=rewards,
                        terminals=terminals
                    )
                )

                # Update the Target Network if needed
                if (agent_step % self._target_update_interval) == 0:
                    self._target_net = self._action_value_net.clone(CloneMethod.freeze)

    def _plot_metrics(self):
        """Plot current buffers accumulated values to visualize agent learning
        """
        if len(self._episode_q_means) > 0:
            mean_q = np.asscalar(np.mean(self._episode_q_means))
            self._metrics_writer.write_value('Mean Q per ep.', mean_q, self._num_actions_taken)

        if len(self._episode_q_stddev) > 0:
            std_q = np.asscalar(np.mean(self._episode_q_stddev))
            self._metrics_writer.write_value('Mean Std Q per ep.', std_q, self._num_actions_taken)

        self._metrics_writer.write_value('Sum rewards per ep.', sum(self._episode_rewards), self._num_actions_taken)


def as_ale_input(environment):
    """Convert the Atari environment RGB output (210, 160, 3) to an ALE one (84, 84).
    We first convert the image to a gray scale image, and resize it.

    Attributes:
        environment (Tensor[input_shape]): Environment to be converted

    Returns:
         Tensor[84, 84] : Environment converted
    """
    from PIL import Image
    return np.array(Image.fromarray(environment).convert('L').resize((84, 84)))

if __name__ == '__main__':
    parser = ArgumentParser()
    parser.add_argument('-e', '--epoch', default=100, type=int, help='Number of epochs to run (epoch = 250k actions')
    parser.add_argument('-p', '--plot', action='store_true', default=False, help='Flag for enabling Tensorboard')
    parser.add_argument('env', default='Pong-v3', type=str, metavar='N', nargs='?', help='Gym Atari environment to run')

    args = parser.parse_args()

    # 1. Make environment:
    env = gym.make(args.env)

    # 2. Make agent
    agent = DeepQAgent((4, 84, 84), env.action_space.n, monitor=args.plot)

    # Train
    current_step = 0
    max_steps = args.epoch * 250000
    current_state = as_ale_input(env.reset())

    while current_step < max_steps:
        action = agent.act(current_state)
        new_state, reward, done, _ = env.step(action)
        new_state = as_ale_input(new_state)

        # Clipping reward for training stability
        reward = np.clip(reward, -1, 1)

        agent.observe(current_state, action, reward, done)
        agent.train()

        current_state = new_state

        if done:
            current_state = as_ale_input(env.reset())

        current_step += 1
back to top