https://github.com/geodynamics/citcoms
Raw File
Tip revision: 74e1fe0aaa5811939f0483e545b9712885ca4722 authored by Eh Tan on 15 May 2003, 07:07:54 UTC
first created
Tip revision: 74e1fe0
Process_buoyancy.c
/*  Here are the routines which process the results of each buoyancy solution, and call
    any relevant output routines. Much of the information has probably been output along
    with the velocity field. (So the velocity vectors and other data are fully in sync).
    However, heat fluxes and temperature averages are calculated here (even when they
    get output the next time around the velocity solver);
    */

#include <math.h>
#include <sys/types.h>
#include <stdlib.h> /* for "system" command */

#include "element_definitions.h"
#include "global_defs.h"

void process_temp_field(E,ii)
 struct All_variables *E;
    int ii;
{ 
    void heat_flux();
    void output_temp();
    void parallel_process_sync();
    void process_output_field();
    int record_h;

    record_h = E->control.record_every;

    if ( (ii == 0) || ((ii % record_h) == 0) || E->control.DIRECTII)    {
      heat_flux(E);
      parallel_process_sync();
/*      output_temp(E,ii);  */
    }  

    if ( ((ii == 0) || ((ii % E->control.record_every) == 0))
	 || E->control.DIRECTII)     {
       process_output_field(E,ii);
    }
    
    return;
}
/* ===================
    Surface heat flux  
   =================== */

void heat_flux(E)
    struct All_variables *E;
{
    int m,e,el,i,j,node,lnode;
    float *flux[NCS],*SU[NCS],*RU[NCS];
    float VV[4][9],u[9],T[9],dTdz[9],area,uT;
    float *sum_h;
    double rtf[4][9];

    struct Shape_function GN;
    struct Shape_function_dA dOmega;
    struct Shape_function_dx GNx;
    void get_global_shape_fn();
    void exchange_node_f();
    void velo_from_element();
    void sum_across_surface();
    void return_horiz_ave();
    void return_horiz_ave_f();

    const int dims=E->mesh.nsd,dofs=E->mesh.dof;
    const int vpts=vpoints[dims];
    const int ppts=ppoints[dims];
    const int ends=enodes[dims];
    const int nno=E->lmesh.nno;
    const int lev = E->mesh.levmax;
    const int sphere_key=1;


  sum_h = (float *) malloc((5)*sizeof(float));
  for(i=0;i<=4;i++)
    sum_h[i] = 0.0;

  for(m=1;m<=E->sphere.caps_per_proc;m++) {

    flux[m] = (float *) malloc((1+nno)*sizeof(float));

    for(i=1;i<=nno;i++)   {
      flux[m][i] = 0.0;
      }

    for(e=1;e<=E->lmesh.nel;e++) {
      get_global_shape_fn(E,e,&GN,&GNx,&dOmega,0,sphere_key,rtf,lev,m);

      velo_from_element(E,VV,m,e,sphere_key);

      for(i=1;i<=vpts;i++)   {
        u[i] = 0.0;
        T[i] = 0.0;
        dTdz[i] = 0.0;
        for(j=1;j<=ends;j++)  {
          u[i] += VV[3][j]*E->N.vpt[GNVINDEX(j,i)];
          T[i] += E->T[m][E->ien[m][e].node[j]]*E->N.vpt[GNVINDEX(j,i)];
          dTdz[i] += -E->T[m][E->ien[m][e].node[j]]*GNx.vpt[GNVXINDEX(2,j,i)];
          }
        }

      uT = 0.0;
      area = 0.0;
      for(i=1;i<=vpts;i++)   {
        uT += u[i]*T[i]*dOmega.vpt[i] + dTdz[i]*dOmega.vpt[i];
        }

      uT /= E->eco[m][e].area;

      for(j=1;j<=ends;j++)
        flux[m][E->ien[m][e].node[j]] += uT*E->TWW[lev][m][e].node[j];

      }             /* end of e */
    }             /* end of m */


  exchange_node_f(E,flux,lev);

  for(m=1;m<=E->sphere.caps_per_proc;m++)
     for(i=1;i<=nno;i++)   
       flux[m][i] *= E->MASS[lev][m][i];

  if (E->parallel.me_loc[3]==E->parallel.nprocz-1)
    for(m=1;m<=E->sphere.caps_per_proc;m++)
      for(i=1;i<=E->lmesh.nsf;i++)
        E->slice.shflux[m][i]=2*flux[m][E->surf_node[m][i]]-flux[m][E->surf_node[m][i]-1];

  if (E->parallel.me_loc[3]==0)
    for(m=1;m<=E->sphere.caps_per_proc;m++)
      for(i=1;i<=E->lmesh.nsf;i++) 
        E->slice.bhflux[m][i] = 2*flux[m][E->surf_node[m][i]-E->lmesh.noz+1]
                                - flux[m][E->surf_node[m][i]-E->lmesh.noz+2];

  for(m=1;m<=E->sphere.caps_per_proc;m++)
    for(e=1;e<=E->lmesh.snel;e++) {
         uT =(E->slice.shflux[m][E->sien[m][e].node[1]] + 
              E->slice.shflux[m][E->sien[m][e].node[2]] +
              E->slice.shflux[m][E->sien[m][e].node[3]] +
              E->slice.shflux[m][E->sien[m][e].node[4]])*0.25;
         el = e*E->lmesh.elz;
         sum_h[0] += uT*E->eco[m][el].area;
         sum_h[1] += E->eco[m][el].area;

         uT =(E->slice.bhflux[m][E->sien[m][e].node[1]] + 
              E->slice.bhflux[m][E->sien[m][e].node[2]] +
              E->slice.bhflux[m][E->sien[m][e].node[3]] +
              E->slice.bhflux[m][E->sien[m][e].node[4]])*0.25;
         el = (e-1)*E->lmesh.elz+1;
         sum_h[2] += uT*E->eco[m][el].area;
         sum_h[3] += E->eco[m][el].area;
         }

  sum_across_surface(E,sum_h,4);

  if (E->parallel.me_loc[3]==E->parallel.nprocz-1)   {
    sum_h[0] = sum_h[0]/sum_h[1];
/*     if (E->control.verbose && E->parallel.me==E->parallel.nprocz-1) fprintf(E->fp_out,"surface heat flux= %f %f\n",sum_h[0],E->monitor.elapsed_time); */
    if (E->parallel.me==E->parallel.nprocz-1) {
      fprintf(stderr,"surface heat flux= %f\n",sum_h[0]);
      fprintf(E->fp,"surface heat flux= %f\n",sum_h[0]);
    }
  }

  if (E->parallel.me_loc[3]==0)    {
    sum_h[2] = sum_h[2]/sum_h[3];
/*     if (E->control.verbose && E->parallel.me==0) fprintf(E->fp_out,"bottom heat flux= %f %f\n",sum_h[2],E->monitor.elapsed_time); */
    if (E->parallel.me==0) {
      fprintf(stderr,"bottom heat flux= %f\n",sum_h[2]);
      fprintf(E->fp,"bottom heat flux= %f\n",sum_h[2]);
    }
  }

  fflush(E->fp_out);
  
  for(m=1;m<=E->sphere.caps_per_proc;m++)
    free((void *)flux[m]);

  free((void *)sum_h);

  return;  
  }
  
back to top