https://github.com/Microsoft/CNTK
Raw File
Tip revision: e2377424a28e9b54bcc0f92373c0d715ca2ed8a3 authored by Bowen Bao on 05 July 2018, 19:49:49 UTC
Moving sequential convolution in python to a new high level api, to maintain compatibility with previous implementation (special case 1d sequential convolution).
Tip revision: e237742
DeprecatedNodes.h
//
// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE.md file in the project root for full license information.
//
#pragma once

#include "Basics.h"
#include "ComputationNode.h"
#include "Matrix.h"

namespace Microsoft { namespace MSR { namespace CNTK {

// -----------------------------------------------------------------------
// SumColumnElements (input)
// Sums up all elements in each sample (column) of the input. Every sample
// will be reduced to a scalar. This is equivalent to multiplying with a row of ones.
// This is deprecated, in favor of ReduceElements().
// -----------------------------------------------------------------------

template <class ElemType>
class SumColumnElementsNode : public ComputationNode<ElemType>, public NumInputs<1>
{
    typedef ComputationNode<ElemType> Base; UsingComputationNodeMembersBoilerplate;
    static const std::wstring TypeName() { return L"SumColumnElements"; }

public:
    DeclareConstructorFromConfigWithNumInputs(SumColumnElementsNode);
    SumColumnElementsNode(DEVICEID_TYPE deviceId, const wstring& name)
        : Base(deviceId, name)
    {
    }

    virtual void /*ComputationNode::*/ ForwardProp(const FrameRange& fr) override
    {
        auto sliceInputValue  = InputRef(0).ValueFor(fr);
        auto sliceOutputValue =           ValueFor(fr); // row vector

        Matrix<ElemType>::VectorSum(sliceInputValue, sliceOutputValue, true);
    }

    virtual void /*ComputationNode::*/ BackpropTo(const size_t /*inputIndex*/, const FrameRange& fr) override
    {
        auto sliceInputGrad  = InputRef(0).GradientFor(fr);
        auto sliceOutputGrad =           GradientFor(fr);

        sliceInputGrad += sliceOutputGrad; // here the assumption is that sliceOutputGrad is a row vector
    }

    virtual bool OutputUsedInComputingInputNodesGradients() const override { return false; }
    virtual bool InputUsedInComputingInputNodesGradients(size_t /*childIndex*/) const override { return false; }

    virtual void /*ComputationNodeBase::*/ Validate(bool isFinalValidationPass) override
    {
        Base::Validate(isFinalValidationPass);
        InferMBLayoutFromInputsForStandardCase(isFinalValidationPass);

        SetDims(TensorShape::Scalar(Environment().IsV2Library()), Input(0)->HasMBLayout()); // each column is reduced to a scalar
    }
};

template class SumColumnElementsNode<float>;
template class SumColumnElementsNode<double>;

// -----------------------------------------------------------------------
// (deprecated) PerDimMeanVarNormalizationNode (feature, mean, invStdDev)
// Computes
//   output = (feature - mean) .* invStdDev
// where mean and invStdDev are meant to be single elements while features
// is minibatch data.
// Deprecated since it can be trivially expressed in BrainScript.
// -----------------------------------------------------------------------

template <class ElemType>
class PerDimMeanVarNormalizationNode : public ComputationNode<ElemType>, public NumInputs<3>
{
    typedef ComputationNode<ElemType> Base;
    UsingComputationNodeMembersBoilerplate;
    static const std::wstring TypeName()
    {
        return L"PerDimMeanVarNormalization";
    }

public:
    DeclareConstructorFromConfigWithNumInputs(PerDimMeanVarNormalizationNode);
    PerDimMeanVarNormalizationNode(DEVICEID_TYPE deviceId, const wstring& name)
        : Base(deviceId, name)
    {
    }

    virtual void /*ComputationNode::*/ BackpropTo(const size_t /*inputIndex*/, const FrameRange&) override
    {
        InvalidArgument("PerDimMeanVarNormalizationNode should only be called in the evaluation stage. Is any of its descendents a learnable parameter that requires gradient?");
    }

    virtual void /*ComputationNode::*/ ForwardProp(const FrameRange& fr) override
    {
        size_t rank = DetermineElementwiseTensorRank();
        auto output    =           ValueTensorFor(rank, fr);
        auto input     = InputRef(0).ValueTensorFor(rank, fr);
        auto mean      = Input(1)->ValueTensorFor(rank, fr.AllowBroadcast());
        auto invStdDev = Input(2)->ValueTensorFor(rank, fr.AllowBroadcast());

        output.AssignDifferenceOf(input, mean);               // output = input - mean
        output.AssignElementwiseProductOf(output, invStdDev); // output *= invStdDev
    }

    virtual void /*ComputationNodeBase::*/ Validate(bool isFinalValidationPass) override
    {
        Base::Validate(isFinalValidationPass);
        InferMBLayoutFromInputsForStandardCase(isFinalValidationPass);

        Input(1)->ValidateInferInputDimsFrom(InputRef(0).GetSampleLayout());
        Input(2)->ValidateInferInputDimsFrom(InputRef(0).GetSampleLayout());


#if 1
        // support for legacy models when the mean and variance vectors were stored as column vectors (N,1)
        // This code will copy the shape of Input(0) (source) to Input(1) and Input(2) (target) if:
        //   1. The source is a 3-tensor with shape 1x1xM
        //   2. The target is a vector (i.e., a 2-tensor with shape Nx1)
        //   3. Both targets have the same number of elements
        //   4. The number of elements in the target (N) is the same as the number of elements in the source (M)
        // Note: This is somewhat ugly [Jasha Droppo].

        auto dimsA = Input(0)->GetSampleLayout().GetDims();
        auto dimsB = Input(1)->GetSampleLayout().GetDims();
        auto dimsC = Input(2)->GetSampleLayout().GetDims();

        if (
            // Test condition 1.
            (dimsA.size() == 3 && dimsA[0] == 1 && dimsA[1] == 1) &&
            // Test condition 2.
            (dimsB.size() == 2 && dimsB[1] == 1) &&
            (dimsC.size() == 2 && dimsC[1] == 1) &&
            // Test condition 3. and condition 4.
            (dimsB[0] == dimsC[0] && dimsB[0] == dimsA[2])
            )
        {
            // for error messages
            string dimsBstring = string(Input(1)->GetSampleLayout());
            string dimsCstring = string(Input(2)->GetSampleLayout());

            // reshape Input(1)
            Input(1)->SetDims(TensorShape(dimsA), false);
            fprintf(stderr, "\n%ls %ls operation: For legacy compatibility, the sample layout of second input (%ls %ls operation) was patched to [%s] (from [%s])\n",
                NodeName().c_str(), OperationName().c_str(), Input(1)->NodeName().c_str(), Input(1)->OperationName().c_str(), string(Input(1)->GetSampleLayout()).c_str(), dimsBstring.c_str());

            // reshape Input(2)
            Input(2)->SetDims(TensorShape(dimsA), false);
            fprintf(stderr, "\n%ls %ls operation: For legacy compatibility, the sample layout of third input (%ls %ls operation) was patched to [%s] (from [%s])\n",
                NodeName().c_str(), OperationName().c_str(), Input(2)->NodeName().c_str(), Input(2)->OperationName().c_str(), string(Input(2)->GetSampleLayout()).c_str(), dimsCstring.c_str());
        }

#endif

        if (isFinalValidationPass)
        {
            if (!Input(0)->GetSampleLayout().IsElementwiseCompatibleWith(Input(1)->GetSampleLayout()) || !Input(0)->GetSampleLayout().IsElementwiseCompatibleWith(Input(2)->GetSampleLayout()))
                InvalidArgument("PerDimMeanVarNormalizationNode: All inputs should have same sample layout.");
        }

        SetDims(Input(0));
    }
};

template class PerDimMeanVarNormalizationNode<float>;
template class PerDimMeanVarNormalizationNode<double>;

// -----------------------------------------------------------------------
// DiagTimesNode (vector representing the diagonal of a square matrix, data)
// Deprecated because can be implemented with ElementTimes.
// -----------------------------------------------------------------------

template <class ElemType>
class DiagTimesNode : public ComputationNode<ElemType>, public NumInputs<2>
{
    typedef ComputationNode<ElemType> Base; UsingComputationNodeMembersBoilerplate;
    static const std::wstring TypeName() { return L"DiagTimes"; }

public:
    DeclareConstructorFromConfigWithNumInputs(DiagTimesNode);
    DiagTimesNode(DEVICEID_TYPE deviceId, const wstring& name)
        : Base(deviceId, name)
    {
    }

    virtual void /*ComputationNode::*/ BackpropTo(const size_t inputIndex, const FrameRange& fr) override
    {
        if (inputIndex == 0) // left derivative
        {
            Matrix<ElemType> sliceOutputGrad = MaskedGradientFor(fr); // use Masked- version since this is reducing over frames
            Matrix<ElemType> sliceInput1Value = Input(1)->MaskedValueFor(fr);
            m_innerproduct->AssignInnerProductOf(sliceOutputGrad, sliceInput1Value, false);
            InputRef(0).GradientAsMatrix() += *m_innerproduct;
        }
        else // right derivative
        {
            Matrix<ElemType> sliceOutputGrad = GradientFor(fr);
            Matrix<ElemType> sliceInput1Grad = Input(1)->GradientFor(fr);
            m_rightGradient->SetValue(sliceOutputGrad);
            m_rightGradient->ColumnElementMultiplyWith(InputRef(0).ValueAsMatrix());
            sliceInput1Grad += *m_rightGradient;
        }
    }

    virtual bool OutputUsedInComputingInputNodesGradients() const override
    {
        // The DiagTimesNode does not require its output value for computing
        // the gradients of its input nodes
        return false;
    }

    virtual void /*ComputationNode::*/ ForwardProp(const FrameRange& fr) override
    {
        Matrix<ElemType> sliceInput1Value = Input(1)->ValueFor(fr);
        Matrix<ElemType> sliceOutputValue = ValueFor(fr);

        sliceOutputValue.AssignValuesOf(sliceInput1Value);
        sliceOutputValue.ColumnElementMultiplyWith(InputRef(0).ValueAsMatrix());
    }

    virtual void /*ComputationNodeBase::*/ Validate(bool isFinalValidationPass) override
    {
        Base::Validate(isFinalValidationPass);
        InferMBLayoutFromInputsForStandardCase(isFinalValidationPass);

        size_t rows0 = Input(0)->GetAsMatrixNumRows();
        size_t rows1 = Input(1)->HasMBLayout() ? Input(1)->GetSampleMatrixNumRows() : Input(1)->GetAsMatrixNumRows();

        // if dimension not specified we assume two operands' dimensions should match
        Input(0)->ValidateInferInputDimsFrom(TensorShape(rows1));

        if (Input(1)->HasMBLayout())
        {
            // infer rows1 as rows0
            Input(1)->ValidateInferInputDimsFrom(TensorShape(rows0));
            SetDims(TensorShape(rows0), true);
        }
        else // multiplying two straight matrices
        {
            size_t cols1 = Input(1)->GetAsMatrixNumCols();
            // infer rows1 as rows0
            Input(1)->ValidateInferInputDimsFrom(TensorShape(rows0, cols1));
            SetDims(TensorShape(rows0, cols1), false);
        }

        // update after inference
        rows0 = Input(0)->GetAsMatrixNumRows();
        rows1 = Input(1)->HasMBLayout() ? Input(1)->GetSampleMatrixNumRows() : Input(1)->GetAsMatrixNumRows();
        if (isFinalValidationPass && rows0 != rows1)
            InvalidArgument("The inner matrix dimension in the %ls %ls operation does not match (%d vs. %d).", NodeName().c_str(), OperationName().c_str(), (int) rows1, (int) rows0);
        size_t cols0 = Input(0)->GetAsMatrixNumCols();
        if (isFinalValidationPass && cols0 != 1)
            InvalidArgument("The first matrix should be a column vector representing the diagonal of a square matrix in the DiagTimes operation.");

        SetDims(Input(1));
    }

    virtual void CopyTo(ComputationNodeBasePtr nodeP, const std::wstring& newName, const CopyNodeFlags flags) const override
    {
        Base::CopyTo(nodeP, newName, flags);
        if (flags & CopyNodeFlags::copyNodeValue)
        {
            auto node = dynamic_pointer_cast<DiagTimesNode<ElemType>>(nodeP);
            node->m_innerproduct->SetValue(*m_innerproduct);
            node->m_rightGradient->SetValue(*m_rightGradient);
        }
    }
    // request matrices that are needed for gradient computation
    virtual void RequestMatricesBeforeBackprop(MatrixPool& matrixPool)
    {
        Base::RequestMatricesBeforeBackprop(matrixPool);
        RequestMatrixFromPool(m_innerproduct, matrixPool);
        RequestMatrixFromPool(m_rightGradient, matrixPool);
    }

    // release gradient and temp matrices that no longer needed after all the children's gradients are computed.
    virtual void ReleaseMatricesAfterBackprop(MatrixPool& matrixPool)
    {
        Base::ReleaseMatricesAfterBackprop(matrixPool);
        ReleaseMatrixToPool(m_innerproduct, matrixPool);
        ReleaseMatrixToPool(m_rightGradient, matrixPool);
    }

private:
    shared_ptr<Matrix<ElemType>> m_innerproduct;
    shared_ptr<Matrix<ElemType>> m_rightGradient;
};

template class DiagTimesNode<float>;
template class DiagTimesNode<double>;

}}}
back to top