https://github.com/EasyCrypt/easycrypt
Raw File
Tip revision: 645a3973e1aca222fd14b73ce4c97b519330be71 authored by François Dupressoir on 18 December 2019, 14:29:51 UTC
tighter Birhtday bound + coarse lemmas
Tip revision: 645a397
StdRing.ec
(* --------------------------------------------------------------------
 * Copyright (c) - 2012--2016 - IMDEA Software Institute
 * Copyright (c) - 2012--2018 - Inria
 * Copyright (c) - 2012--2018 - Ecole Polytechnique
 *
 * Distributed under the terms of the CeCILL-B-V1 license
 * -------------------------------------------------------------------- *)

(* -------------------------------------------------------------------- *)
require import Bool Int IntExtra Real RealExtra.
require (*--*) Ring.

(* -------------------------------------------------------------------- *)
theory RField.
  clone include Ring.Field with
    type t <- real,
    op   zeror <- 0%r,
    op   oner  <- 1%r,
    op   ( + ) <- Real.( + ),
    op   [ - ] <- Real.([-]),
    op   ( * ) <- Real.( * ),
    op   invr  <- Real.inv
    proof *
  remove abbrev (-) remove abbrev (/).
  realize addrA     by smt().
  realize addrC     by smt().
  realize add0r     by smt().
  realize addNr     by smt().
  realize oner_neq0 by smt().
  realize mulrA     by smt().
  realize mulrC     by smt().
  realize mul1r     by smt().
  realize mulrDl    by smt().
  realize mulVr     by rewrite /left_inverse_in /#.
  realize unitP     by smt().
  realize unitout   by move=> x /= ->; exact/invr0.
  realize mulf_eq0  by smt().

  lemma nosmt ofintR (i : int): ofint i = i%r.
  proof.
  have h: forall i, 0 <= i => ofint i = i%r.
  + elim=> [|j j_ge0 ih] //=; first by rewrite ofint0.
    by rewrite ofintS // fromintD ih addrC.
  elim/natind: i=> [n|/#].
  by rewrite -oppz_ge0 -eqr_opp -ofintN -fromintN; exact/h.
  qed.

  lemma intmulr x c : intmul x c = x * c%r.
  proof.
    have h: forall cp, 0 <= cp => intmul x cp = x * cp%r.
      elim=> /= [|cp ge0_cp ih].
        by rewrite mulr0z.
      by rewrite mulrS // ih fromintD mulrDr mulr1 addrC.
    case: (lezWP c 0) => [le0c|_ /h //].
    rewrite -{2}(@oppzK c) fromintN mulrN -h 1:smt.
    by rewrite mulrNz opprK.
  qed.

  lemma nosmt double_half (x : real) : x / 2%r + x / 2%r = x.
  proof. by rewrite -ofintR -mulrDl -mul1r2z -mulrA divff // ofintR. qed.

  lemma powrE (x : real) (n : int) : x ^ n = exp x n.
  proof.
  elim/intwlog: n => [n h| |n gt0_n ih].
  + by rewrite -(oppzK n) powrN exprN h.
  + by rewrite powr0 expr0 fromint1.
  + by rewrite !(powrS, exprS) // ih mulrC.
  qed.
end RField.

(* -------------------------------------------------------------------- *)
instance ring with int
  op rzero = Int.zero
  op rone  = Int.one
  op add   = Int.( + )
  op opp   = Int.([-])
  op mul   = Int.( * )
  op expr  = IntExtra.( ^ )

  proof oner_neq0 by smt()
  proof addr0     by smt()
  proof addrA     by smt()
  proof addrC     by smt()
  proof addrN     by smt()
  proof mulr1     by smt()
  proof mulrA     by smt()
  proof mulrC     by smt()
  proof mulrDl    by smt()
  proof expr0     by smt(pow0)
  proof exprS     by smt(powS).

op bid (b:bool) = b.

instance bring with bool
  op rzero = false
  op rone  = true
  op add   = Bool.( ^^ )
  op mul   = (/\)
  op opp   = bid

  proof oner_neq0 by smt()
  proof addr0     by smt()
  proof addrA     by smt()
  proof addrC     by smt()
  proof addrK     by smt()
  proof mulr1     by smt()
  proof mulrA     by smt()
  proof mulrC     by smt()
  proof mulrDl    by smt()
  proof mulrK     by smt()
  proof oppr_id   by smt().
back to top