https://github.com/GPflow/GPflow
Raw File
Tip revision: b81e94e16826a1c8d996b0f590b8c3407a0e6a07 authored by Jesper Nielsen on 23 September 2022, 09:50:10 UTC
Experiment with using a warped halton sequence for inducing points.
Tip revision: b81e94e
scalar_continuous.py
# Copyright 2017-2020 The GPflow Contributors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from math import sqrt
from typing import Any, Callable, Optional

import numpy as np
import tensorflow as tf
from check_shapes import check_shapes, inherit_check_shapes

from .. import logdensities
from ..base import MeanAndVariance, TensorType
from ..utilities.parameter_or_function import (
    ConstantOrFunction,
    ParameterOrFunction,
    evaluate_parameter_or_function,
    prepare_parameter_or_function,
)
from .base import ScalarLikelihood
from .utils import inv_probit

DEFAULT_LOWER_BOUND = 1e-6


class Gaussian(ScalarLikelihood):
    r"""
    The Gaussian likelihood is appropriate where uncertainties associated with
    the data are believed to follow a normal distribution, with constant
    variance.

    Very small uncertainties can lead to numerical instability during the
    optimization process. A lower bound of 1e-6 is therefore imposed on the
    likelihood variance by default.
    """

    def __init__(
        self,
        variance: Optional[ConstantOrFunction] = None,
        *,
        scale: Optional[ConstantOrFunction] = None,
        variance_lower_bound: float = DEFAULT_LOWER_BOUND,
        **kwargs: Any,
    ) -> None:
        """
        :param variance: The noise variance; must be greater than
            ``variance_lower_bound``. This is mutually exclusive with `scale`.
        :param scale: The noise scale; must be greater than
            ``sqrt(variance_lower_bound)``. This is mutually exclusive with `variance`.
        :param variance_lower_bound: The lower (exclusive) bound of ``variance``.
        :param kwargs: Keyword arguments forwarded to :class:`ScalarLikelihood`.
        """
        super().__init__(**kwargs)

        self.variance_lower_bound = variance_lower_bound
        self.scale_lower_bound = sqrt(variance_lower_bound)
        if scale is None:
            if variance is None:
                variance = 1.0
            self.variance: Optional[ParameterOrFunction] = prepare_parameter_or_function(
                variance, lower_bound=self.variance_lower_bound
            )
            self.scale: Optional[ParameterOrFunction] = None
        else:
            if variance is None:
                self.variance = None
                self.scale = prepare_parameter_or_function(
                    scale, lower_bound=self.scale_lower_bound
                )
            else:
                assert False, "Cannot set both `variance` and `scale`."

    @check_shapes(
        "X: [batch..., N, D]",
        "return: [broadcast batch..., broadcast N, broadcast P]",
    )
    def _variance(self, X: TensorType) -> tf.Tensor:
        if self.variance is not None:
            return evaluate_parameter_or_function(
                self.variance, X, lower_bound=self.variance_lower_bound
            )
        else:
            assert self.scale is not None  # For mypy.
            return (
                evaluate_parameter_or_function(self.scale, X, lower_bound=self.scale_lower_bound)
                ** 2
            )

    @check_shapes(
        "X: [batch..., N, D]",
        "return: [batch..., N, 1]",
    )
    def variance_at(self, X: TensorType) -> tf.Tensor:
        variance = self._variance(X)
        shape = tf.concat([tf.shape(X)[:-1], [1]], 0)
        return tf.broadcast_to(variance, shape)

    @inherit_check_shapes
    def _scalar_log_prob(self, X: TensorType, F: TensorType, Y: TensorType) -> tf.Tensor:
        return logdensities.gaussian(Y, F, self._variance(X))

    @inherit_check_shapes
    def _conditional_mean(self, X: TensorType, F: TensorType) -> tf.Tensor:  # pylint: disable=R0201
        return tf.identity(F)

    @inherit_check_shapes
    def _conditional_variance(self, X: TensorType, F: TensorType) -> tf.Tensor:
        shape = tf.shape(F)
        return tf.broadcast_to(self._variance(X), shape)

    @inherit_check_shapes
    def _predict_mean_and_var(
        self, X: TensorType, Fmu: TensorType, Fvar: TensorType
    ) -> MeanAndVariance:
        return tf.identity(Fmu), Fvar + self._variance(X)

    @inherit_check_shapes
    def _predict_log_density(
        self, X: TensorType, Fmu: TensorType, Fvar: TensorType, Y: TensorType
    ) -> tf.Tensor:
        return tf.reduce_sum(logdensities.gaussian(Y, Fmu, Fvar + self._variance(X)), axis=-1)

    @inherit_check_shapes
    def _variational_expectations(
        self, X: TensorType, Fmu: TensorType, Fvar: TensorType, Y: TensorType
    ) -> tf.Tensor:
        variance = self._variance(X)
        return tf.reduce_sum(
            -0.5 * np.log(2 * np.pi)
            - 0.5 * tf.math.log(variance)
            - 0.5 * ((Y - Fmu) ** 2 + Fvar) / variance,
            axis=-1,
        )


class Exponential(ScalarLikelihood):
    def __init__(self, invlink: Callable[[tf.Tensor], tf.Tensor] = tf.exp, **kwargs: Any) -> None:
        super().__init__(**kwargs)
        self.invlink = invlink

    @inherit_check_shapes
    def _scalar_log_prob(self, X: TensorType, F: TensorType, Y: TensorType) -> tf.Tensor:
        return logdensities.exponential(Y, self.invlink(F))

    @inherit_check_shapes
    def _conditional_mean(self, X: TensorType, F: TensorType) -> tf.Tensor:
        return self.invlink(F)

    @inherit_check_shapes
    def _conditional_variance(self, X: TensorType, F: TensorType) -> tf.Tensor:
        return tf.square(self.invlink(F))

    @inherit_check_shapes
    def _variational_expectations(
        self, X: TensorType, Fmu: TensorType, Fvar: TensorType, Y: TensorType
    ) -> tf.Tensor:
        if self.invlink is tf.exp:
            return tf.reduce_sum(-tf.exp(-Fmu + Fvar / 2) * Y - Fmu, axis=-1)
        return super()._variational_expectations(X, Fmu, Fvar, Y)


class StudentT(ScalarLikelihood):
    def __init__(
        self,
        scale: ConstantOrFunction = 1.0,
        df: float = 3.0,
        scale_lower_bound: float = DEFAULT_LOWER_BOUND,
        **kwargs: Any,
    ) -> None:
        """
        :param scale float: scale parameter
        :param df float: degrees of freedom
        """
        super().__init__(**kwargs)
        self.df = df
        self.scale_lower_bound = scale_lower_bound
        self.scale = prepare_parameter_or_function(scale, lower_bound=self.scale_lower_bound)

    @check_shapes(
        "X: [batch..., N, D]",
        "return: [broadcast batch..., broadcast N, broadcast P]",
    )
    def _scale(self, X: TensorType) -> tf.Tensor:
        return evaluate_parameter_or_function(self.scale, X, lower_bound=self.scale_lower_bound)

    @inherit_check_shapes
    def _scalar_log_prob(self, X: TensorType, F: TensorType, Y: TensorType) -> tf.Tensor:
        return logdensities.student_t(Y, F, self._scale(X), self.df)

    @inherit_check_shapes
    def _conditional_mean(self, X: TensorType, F: TensorType) -> tf.Tensor:
        return F

    @inherit_check_shapes
    def _conditional_variance(self, X: TensorType, F: TensorType) -> tf.Tensor:
        shape = tf.shape(F)
        var = (self._scale(X) ** 2) * (self.df / (self.df - 2.0))
        return tf.broadcast_to(var, shape)


class Gamma(ScalarLikelihood):
    """
    Use the transformed GP to give the *scale* (inverse rate) of the Gamma
    """

    def __init__(
        self,
        invlink: Callable[[tf.Tensor], tf.Tensor] = tf.exp,
        shape: ConstantOrFunction = 1.0,
        shape_lower_bound: float = DEFAULT_LOWER_BOUND,
        **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)
        self.invlink = invlink
        self.shape_lower_bound = shape_lower_bound
        self.shape = prepare_parameter_or_function(shape, lower_bound=self.shape_lower_bound)

    @check_shapes(
        "X: [batch..., N, D]",
        "return: [broadcast batch..., broadcast N, broadcast P]",
    )
    def _shape(self, X: TensorType) -> tf.Tensor:
        return evaluate_parameter_or_function(self.shape, X, lower_bound=self.shape_lower_bound)

    @inherit_check_shapes
    def _scalar_log_prob(self, X: TensorType, F: TensorType, Y: TensorType) -> tf.Tensor:
        return logdensities.gamma(Y, self._shape(X), self.invlink(F))

    @inherit_check_shapes
    def _conditional_mean(self, X: TensorType, F: TensorType) -> tf.Tensor:
        return self._shape(X) * self.invlink(F)

    @inherit_check_shapes
    def _conditional_variance(self, X: TensorType, F: TensorType) -> tf.Tensor:
        scale = self.invlink(F)
        return self._shape(X) * (scale ** 2)

    @inherit_check_shapes
    def _variational_expectations(
        self, X: TensorType, Fmu: TensorType, Fvar: TensorType, Y: TensorType
    ) -> tf.Tensor:
        if self.invlink is tf.exp:
            shape = self._shape(X)
            return tf.reduce_sum(
                -shape * Fmu
                - tf.math.lgamma(shape)
                + (shape - 1.0) * tf.math.log(Y)
                - Y * tf.exp(-Fmu + Fvar / 2.0),
                axis=-1,
            )
        else:
            return super()._variational_expectations(X, Fmu, Fvar, Y)


class Beta(ScalarLikelihood):
    """
    This uses a reparameterisation of the Beta density. We have the mean of the
    Beta distribution given by the transformed process:

        m = invlink(f)

    and a scale parameter. The familiar α, β parameters are given by

        m     = α / (α + β)
        scale = α + β

    so:
        α = scale * m
        β  = scale * (1-m)
    """

    def __init__(
        self,
        invlink: Callable[[tf.Tensor], tf.Tensor] = inv_probit,
        scale: ConstantOrFunction = 1.0,
        scale_lower_bound: float = DEFAULT_LOWER_BOUND,
        **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)
        self.scale_lower_bound = DEFAULT_LOWER_BOUND
        self.scale = prepare_parameter_or_function(scale, lower_bound=self.scale_lower_bound)
        self.invlink = invlink

    @check_shapes(
        "X: [batch..., N, D]",
        "return: [broadcast batch..., broadcast N, broadcast P]",
    )
    def _scale(self, X: TensorType) -> tf.Tensor:
        return evaluate_parameter_or_function(self.scale, X, lower_bound=self.scale_lower_bound)

    @inherit_check_shapes
    def _scalar_log_prob(self, X: TensorType, F: TensorType, Y: TensorType) -> tf.Tensor:
        mean = self.invlink(F)
        scale = self._scale(X)
        alpha = mean * scale
        beta = scale - alpha
        return logdensities.beta(Y, alpha, beta)

    @inherit_check_shapes
    def _conditional_mean(self, X: TensorType, F: TensorType) -> tf.Tensor:
        return self.invlink(F)

    @inherit_check_shapes
    def _conditional_variance(self, X: TensorType, F: TensorType) -> tf.Tensor:
        mean = self.invlink(F)
        var = (mean - tf.square(mean)) / (self._scale(X) + 1.0)
        shape = tf.shape(F)
        return tf.broadcast_to(var, shape)
back to top