https://github.com/cran/RandomFields
Raw File
Tip revision: e994a4415e67fa60cbfd3f208aaab20872521c0b authored by Martin Schlather on 14 February 2019, 21:02:19 UTC
version 3.3
Tip revision: e994a44
RMmatern.Rd
\name{RMwhittlematern}
\alias{RMwhittle}
\alias{RMkbessel}
\alias{RMmatern}
\alias{RMhandcock}
\alias{Sobolev}
\alias{whittle-matern}
\title{Whittle-Matern Covariance Model}
\description{
 \command{\link{RMmatern}} is a stationary isotropic covariance model
 belonging to the Matern family. 
 The corresponding covariance function only depends on the distance
 \eqn{r \ge 0}{r \ge 0}
 between two points.

 The Whittle model is given by
 \deqn{C(r)=W_{\nu}(r)=2^{1- \nu}
 \Gamma(\nu)^{-1}r^{\nu}K_{\nu}(r)}{C(r)=W_{\nu}(r)=2^{1- \nu}
 \Gamma(\nu)^{-1}r^{\nu}K_{\nu}(r)} 
 where \eqn{\nu > 0}{\nu > 0} and \eqn{K_\nu}{K_\nu} is the modified
 Bessel function of second kind.

 The Matern model is given by
 \deqn{C(r) = \frac{2^{1-\nu}}{\Gamma(\nu)} (\sqrt{2\nu}r)^\nu
 K_\nu(\sqrt{2\nu}r)}{C(r) = 2^{1- \nu} \Gamma(\nu)^{-1} (\sqrt{2\nu}
 r)^\nu K_\nu(\sqrt{2\nu} r)}


 The Handcock-Wallis parametrisation is given by
 \deqn{C(r) = \frac{2^{1-\nu}}{\Gamma(\nu)} (2\sqrt{\nu}r)^\nu
 K_\nu(2 \sqrt{\nu}r)}{C(r) = 2^{1- \nu} \Gamma(\nu)^{-1} (2\sqrt{\nu}
 r)^\nu K_\nu(2\sqrt{\nu} r)}

 }
\usage{
RMwhittle(nu, notinvnu, var, scale, Aniso, proj)

RMmatern(nu, notinvnu, var, scale, Aniso, proj)

RMhandcock(nu, notinvnu, var, scale, Aniso, proj)

}
\arguments{
 \item{nu}{a numerical value called \dQuote{smoothness parameter};
 should be greater than 0.} 
 \item{notinvnu}{logical. If \code{FALSE} then in the definition
   of the models \eqn{\nu} is replaced by \eqn{1/\nu}.
   This parametrization seems to be more natural.
   Default is, however, \code{TRUE} according with the definitions in
   literature. 
 }
 \item{var,scale,Aniso,proj}{optional arguments; same meaning for any
 \command{\link{RMmodel}}. If not passed, the above
 covariance function remains unmodified.}
}
\details{

The three models 
 are alternative parametrizations of the same covariance function.
 The Matern model or the Handcock-Wallis parametrisation
 should be preferred as they seperate the
 effects of the scaling parameter and the shape parameter. 

 The Whittle-Matern model is the model of choice if the smoothness of a
random field is to be parametrized: the sample paths of a Gaussian
random field with this covariance structure are \eqn{m}{m} times
differentiable if and only if \eqn{\nu > m}{\nu > m} (see Gelfand et
al., 2010, p. 24).

Furthermore, the fractal dimension (see also \command{\link{RFfractaldim}})
\emph{D} of the Gaussian sample paths
is determined by \eqn{\nu}{\nu}: We have
\deqn{D = d + 1 - \nu, \nu \in (0,1)}{D = d + 1 - \nu, 0 < \nu < 1}
and \eqn{D = d}{D = d} for \eqn{\nu > 1}{\nu > 1} where \eqn{d}{d} is
the dimension of the random field (see Stein, 1999, p. 32).

If \eqn{\nu=0.5}{\nu=0.5} the Matern model equals \command{\link{RMexp}}.

For \eqn{\nu}{\nu} tending to \eqn{\infty}{\infty} a rescaled Gaussian
model \command{\link{RMgauss}} \eqn{C(r) = -r^2}
appears as limit of the above Handcock-Wallis parametrisation. 

 For generalizations see section \sQuote{See Also}.
}

\note{
 The Whittle-Matern model is a normal scale mixture.
}

\value{
 The functions return an object of class \code{\link[=RMmodel-class]{RMmodel}}.
}
\references{
  Covariance function
  \itemize{
    \item Chiles,
    J.-P. and Delfiner, P. (1999)
    \emph{Geostatistics. Modeling Spatial Uncertainty.}
    New York: Wiley.
    
    \item Gelfand, A. E., Diggle, P., Fuentes, M. and Guttorp,
    P. (eds.) (2010) \emph{Handbook of Spatial Statistics.}
    Boca Raton: Chapman & Hall/CRL.
    
    \item Guttorp, P. and Gneiting, T. (2006) Studies in the
    history of probability and statistics. XLIX. On the Matern
    correlation family. \emph{Biometrika} \bold{93}, 989--995.
    
    \item Handcock, M. S. and Wallis, J. R. (1994) An approach to
    statistical spatio-temporal modeling of meteorological fields.
    \emph{JASA} \bold{89}, 368--378.
    
    \item Stein, M. L. (1999) \emph{Interpolation of Spatial Data --
      Some Theory for Kriging.} New York: Springer.
  }

  

  Tail correlation function (for \eqn{\nu \in (0,1/2]}{0 < \nu \le 1/2})
  \itemize{
    \item Strokorb, K., Ballani, F., and  Schlather, M. (2014)
    Tail correlation functions of max-stable processes: Construction
    principles, recovery and diversity of some mixing max-stable
    processes with identical TCF. 
    \emph{Extremes}, \bold{} Submitted.
  }

}

\me

\seealso{
 \itemize{
 \item \command{\link{RMexp}}, \command{\link{RMgauss}} for special
 cases of the model (for \eqn{\nu=0.5}{\nu=0.5} and
 \eqn{\nu=\infty}{\nu=\infty}, respectively)

 \item \command{\link{RMhyperbolic}} for a univariate
 generalization

 \item \command{\link{RMbiwm}} for a multivariate generalization
 
 \item \command{\link{RMnonstwm}}, \command{\link{RMstein}} for anisotropic (space-time) generalizations
 
% \item \command{\link{}} for 
 
 \item \command{\link{RMmodel}},
 \command{\link{RFsimulate}},
 \command{\link{RFfit}} for general use.
 }

}


\keyword{spatial}
\keyword{models}


\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

x <- seq(0, 1, len=100)
model <- RMwhittle(nu=1, Aniso=matrix(nc=2, c(1.5, 3, -3, 4)))
plot(model, dim=2, xlim=c(-1,1))
z <- RFsimulate(model=model, x, x)
plot(z)
\dontshow{FinalizeExample()}}
back to top