https://github.com/torvalds/linux
Raw File
Tip revision: 899611ee7d373e5eeda08e9a8632684e1ebbbf00 authored by Linus Torvalds on 29 September 2010, 01:01:22 UTC
Linux 2.6.36-rc6
Tip revision: 899611e
memblock.c
/*
 * Procedures for maintaining information about logical memory blocks.
 *
 * Peter Bergner, IBM Corp.	June 2001.
 * Copyright (C) 2001 Peter Bergner.
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/memblock.h>

#define MEMBLOCK_ALLOC_ANYWHERE	0

struct memblock memblock;

static int memblock_debug;

static int __init early_memblock(char *p)
{
	if (p && strstr(p, "debug"))
		memblock_debug = 1;
	return 0;
}
early_param("memblock", early_memblock);

static void memblock_dump(struct memblock_region *region, char *name)
{
	unsigned long long base, size;
	int i;

	pr_info(" %s.cnt  = 0x%lx\n", name, region->cnt);

	for (i = 0; i < region->cnt; i++) {
		base = region->region[i].base;
		size = region->region[i].size;

		pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n",
		    name, i, base, base + size - 1, size);
	}
}

void memblock_dump_all(void)
{
	if (!memblock_debug)
		return;

	pr_info("MEMBLOCK configuration:\n");
	pr_info(" rmo_size    = 0x%llx\n", (unsigned long long)memblock.rmo_size);
	pr_info(" memory.size = 0x%llx\n", (unsigned long long)memblock.memory.size);

	memblock_dump(&memblock.memory, "memory");
	memblock_dump(&memblock.reserved, "reserved");
}

static unsigned long memblock_addrs_overlap(u64 base1, u64 size1, u64 base2,
					u64 size2)
{
	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
}

static long memblock_addrs_adjacent(u64 base1, u64 size1, u64 base2, u64 size2)
{
	if (base2 == base1 + size1)
		return 1;
	else if (base1 == base2 + size2)
		return -1;

	return 0;
}

static long memblock_regions_adjacent(struct memblock_region *rgn,
		unsigned long r1, unsigned long r2)
{
	u64 base1 = rgn->region[r1].base;
	u64 size1 = rgn->region[r1].size;
	u64 base2 = rgn->region[r2].base;
	u64 size2 = rgn->region[r2].size;

	return memblock_addrs_adjacent(base1, size1, base2, size2);
}

static void memblock_remove_region(struct memblock_region *rgn, unsigned long r)
{
	unsigned long i;

	for (i = r; i < rgn->cnt - 1; i++) {
		rgn->region[i].base = rgn->region[i + 1].base;
		rgn->region[i].size = rgn->region[i + 1].size;
	}
	rgn->cnt--;
}

/* Assumption: base addr of region 1 < base addr of region 2 */
static void memblock_coalesce_regions(struct memblock_region *rgn,
		unsigned long r1, unsigned long r2)
{
	rgn->region[r1].size += rgn->region[r2].size;
	memblock_remove_region(rgn, r2);
}

void __init memblock_init(void)
{
	/* Create a dummy zero size MEMBLOCK which will get coalesced away later.
	 * This simplifies the memblock_add() code below...
	 */
	memblock.memory.region[0].base = 0;
	memblock.memory.region[0].size = 0;
	memblock.memory.cnt = 1;

	/* Ditto. */
	memblock.reserved.region[0].base = 0;
	memblock.reserved.region[0].size = 0;
	memblock.reserved.cnt = 1;
}

void __init memblock_analyze(void)
{
	int i;

	memblock.memory.size = 0;

	for (i = 0; i < memblock.memory.cnt; i++)
		memblock.memory.size += memblock.memory.region[i].size;
}

static long memblock_add_region(struct memblock_region *rgn, u64 base, u64 size)
{
	unsigned long coalesced = 0;
	long adjacent, i;

	if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) {
		rgn->region[0].base = base;
		rgn->region[0].size = size;
		return 0;
	}

	/* First try and coalesce this MEMBLOCK with another. */
	for (i = 0; i < rgn->cnt; i++) {
		u64 rgnbase = rgn->region[i].base;
		u64 rgnsize = rgn->region[i].size;

		if ((rgnbase == base) && (rgnsize == size))
			/* Already have this region, so we're done */
			return 0;

		adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize);
		if (adjacent > 0) {
			rgn->region[i].base -= size;
			rgn->region[i].size += size;
			coalesced++;
			break;
		} else if (adjacent < 0) {
			rgn->region[i].size += size;
			coalesced++;
			break;
		}
	}

	if ((i < rgn->cnt - 1) && memblock_regions_adjacent(rgn, i, i+1)) {
		memblock_coalesce_regions(rgn, i, i+1);
		coalesced++;
	}

	if (coalesced)
		return coalesced;
	if (rgn->cnt >= MAX_MEMBLOCK_REGIONS)
		return -1;

	/* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
	for (i = rgn->cnt - 1; i >= 0; i--) {
		if (base < rgn->region[i].base) {
			rgn->region[i+1].base = rgn->region[i].base;
			rgn->region[i+1].size = rgn->region[i].size;
		} else {
			rgn->region[i+1].base = base;
			rgn->region[i+1].size = size;
			break;
		}
	}

	if (base < rgn->region[0].base) {
		rgn->region[0].base = base;
		rgn->region[0].size = size;
	}
	rgn->cnt++;

	return 0;
}

long memblock_add(u64 base, u64 size)
{
	struct memblock_region *_rgn = &memblock.memory;

	/* On pSeries LPAR systems, the first MEMBLOCK is our RMO region. */
	if (base == 0)
		memblock.rmo_size = size;

	return memblock_add_region(_rgn, base, size);

}

static long __memblock_remove(struct memblock_region *rgn, u64 base, u64 size)
{
	u64 rgnbegin, rgnend;
	u64 end = base + size;
	int i;

	rgnbegin = rgnend = 0; /* supress gcc warnings */

	/* Find the region where (base, size) belongs to */
	for (i=0; i < rgn->cnt; i++) {
		rgnbegin = rgn->region[i].base;
		rgnend = rgnbegin + rgn->region[i].size;

		if ((rgnbegin <= base) && (end <= rgnend))
			break;
	}

	/* Didn't find the region */
	if (i == rgn->cnt)
		return -1;

	/* Check to see if we are removing entire region */
	if ((rgnbegin == base) && (rgnend == end)) {
		memblock_remove_region(rgn, i);
		return 0;
	}

	/* Check to see if region is matching at the front */
	if (rgnbegin == base) {
		rgn->region[i].base = end;
		rgn->region[i].size -= size;
		return 0;
	}

	/* Check to see if the region is matching at the end */
	if (rgnend == end) {
		rgn->region[i].size -= size;
		return 0;
	}

	/*
	 * We need to split the entry -  adjust the current one to the
	 * beginging of the hole and add the region after hole.
	 */
	rgn->region[i].size = base - rgn->region[i].base;
	return memblock_add_region(rgn, end, rgnend - end);
}

long memblock_remove(u64 base, u64 size)
{
	return __memblock_remove(&memblock.memory, base, size);
}

long __init memblock_free(u64 base, u64 size)
{
	return __memblock_remove(&memblock.reserved, base, size);
}

long __init memblock_reserve(u64 base, u64 size)
{
	struct memblock_region *_rgn = &memblock.reserved;

	BUG_ON(0 == size);

	return memblock_add_region(_rgn, base, size);
}

long memblock_overlaps_region(struct memblock_region *rgn, u64 base, u64 size)
{
	unsigned long i;

	for (i = 0; i < rgn->cnt; i++) {
		u64 rgnbase = rgn->region[i].base;
		u64 rgnsize = rgn->region[i].size;
		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
			break;
	}

	return (i < rgn->cnt) ? i : -1;
}

static u64 memblock_align_down(u64 addr, u64 size)
{
	return addr & ~(size - 1);
}

static u64 memblock_align_up(u64 addr, u64 size)
{
	return (addr + (size - 1)) & ~(size - 1);
}

static u64 __init memblock_alloc_nid_unreserved(u64 start, u64 end,
					   u64 size, u64 align)
{
	u64 base, res_base;
	long j;

	base = memblock_align_down((end - size), align);
	while (start <= base) {
		j = memblock_overlaps_region(&memblock.reserved, base, size);
		if (j < 0) {
			/* this area isn't reserved, take it */
			if (memblock_add_region(&memblock.reserved, base, size) < 0)
				base = ~(u64)0;
			return base;
		}
		res_base = memblock.reserved.region[j].base;
		if (res_base < size)
			break;
		base = memblock_align_down(res_base - size, align);
	}

	return ~(u64)0;
}

static u64 __init memblock_alloc_nid_region(struct memblock_property *mp,
				       u64 (*nid_range)(u64, u64, int *),
				       u64 size, u64 align, int nid)
{
	u64 start, end;

	start = mp->base;
	end = start + mp->size;

	start = memblock_align_up(start, align);
	while (start < end) {
		u64 this_end;
		int this_nid;

		this_end = nid_range(start, end, &this_nid);
		if (this_nid == nid) {
			u64 ret = memblock_alloc_nid_unreserved(start, this_end,
							   size, align);
			if (ret != ~(u64)0)
				return ret;
		}
		start = this_end;
	}

	return ~(u64)0;
}

u64 __init memblock_alloc_nid(u64 size, u64 align, int nid,
			 u64 (*nid_range)(u64 start, u64 end, int *nid))
{
	struct memblock_region *mem = &memblock.memory;
	int i;

	BUG_ON(0 == size);

	size = memblock_align_up(size, align);

	for (i = 0; i < mem->cnt; i++) {
		u64 ret = memblock_alloc_nid_region(&mem->region[i],
					       nid_range,
					       size, align, nid);
		if (ret != ~(u64)0)
			return ret;
	}

	return memblock_alloc(size, align);
}

u64 __init memblock_alloc(u64 size, u64 align)
{
	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
}

u64 __init memblock_alloc_base(u64 size, u64 align, u64 max_addr)
{
	u64 alloc;

	alloc = __memblock_alloc_base(size, align, max_addr);

	if (alloc == 0)
		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
		      (unsigned long long) size, (unsigned long long) max_addr);

	return alloc;
}

u64 __init __memblock_alloc_base(u64 size, u64 align, u64 max_addr)
{
	long i, j;
	u64 base = 0;
	u64 res_base;

	BUG_ON(0 == size);

	size = memblock_align_up(size, align);

	/* On some platforms, make sure we allocate lowmem */
	/* Note that MEMBLOCK_REAL_LIMIT may be MEMBLOCK_ALLOC_ANYWHERE */
	if (max_addr == MEMBLOCK_ALLOC_ANYWHERE)
		max_addr = MEMBLOCK_REAL_LIMIT;

	for (i = memblock.memory.cnt - 1; i >= 0; i--) {
		u64 memblockbase = memblock.memory.region[i].base;
		u64 memblocksize = memblock.memory.region[i].size;

		if (memblocksize < size)
			continue;
		if (max_addr == MEMBLOCK_ALLOC_ANYWHERE)
			base = memblock_align_down(memblockbase + memblocksize - size, align);
		else if (memblockbase < max_addr) {
			base = min(memblockbase + memblocksize, max_addr);
			base = memblock_align_down(base - size, align);
		} else
			continue;

		while (base && memblockbase <= base) {
			j = memblock_overlaps_region(&memblock.reserved, base, size);
			if (j < 0) {
				/* this area isn't reserved, take it */
				if (memblock_add_region(&memblock.reserved, base, size) < 0)
					return 0;
				return base;
			}
			res_base = memblock.reserved.region[j].base;
			if (res_base < size)
				break;
			base = memblock_align_down(res_base - size, align);
		}
	}
	return 0;
}

/* You must call memblock_analyze() before this. */
u64 __init memblock_phys_mem_size(void)
{
	return memblock.memory.size;
}

u64 memblock_end_of_DRAM(void)
{
	int idx = memblock.memory.cnt - 1;

	return (memblock.memory.region[idx].base + memblock.memory.region[idx].size);
}

/* You must call memblock_analyze() after this. */
void __init memblock_enforce_memory_limit(u64 memory_limit)
{
	unsigned long i;
	u64 limit;
	struct memblock_property *p;

	if (!memory_limit)
		return;

	/* Truncate the memblock regions to satisfy the memory limit. */
	limit = memory_limit;
	for (i = 0; i < memblock.memory.cnt; i++) {
		if (limit > memblock.memory.region[i].size) {
			limit -= memblock.memory.region[i].size;
			continue;
		}

		memblock.memory.region[i].size = limit;
		memblock.memory.cnt = i + 1;
		break;
	}

	if (memblock.memory.region[0].size < memblock.rmo_size)
		memblock.rmo_size = memblock.memory.region[0].size;

	memory_limit = memblock_end_of_DRAM();

	/* And truncate any reserves above the limit also. */
	for (i = 0; i < memblock.reserved.cnt; i++) {
		p = &memblock.reserved.region[i];

		if (p->base > memory_limit)
			p->size = 0;
		else if ((p->base + p->size) > memory_limit)
			p->size = memory_limit - p->base;

		if (p->size == 0) {
			memblock_remove_region(&memblock.reserved, i);
			i--;
		}
	}
}

int __init memblock_is_reserved(u64 addr)
{
	int i;

	for (i = 0; i < memblock.reserved.cnt; i++) {
		u64 upper = memblock.reserved.region[i].base +
			memblock.reserved.region[i].size - 1;
		if ((addr >= memblock.reserved.region[i].base) && (addr <= upper))
			return 1;
	}
	return 0;
}

int memblock_is_region_reserved(u64 base, u64 size)
{
	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
}

/*
 * Given a <base, len>, find which memory regions belong to this range.
 * Adjust the request and return a contiguous chunk.
 */
int memblock_find(struct memblock_property *res)
{
	int i;
	u64 rstart, rend;

	rstart = res->base;
	rend = rstart + res->size - 1;

	for (i = 0; i < memblock.memory.cnt; i++) {
		u64 start = memblock.memory.region[i].base;
		u64 end = start + memblock.memory.region[i].size - 1;

		if (start > rend)
			return -1;

		if ((end >= rstart) && (start < rend)) {
			/* adjust the request */
			if (rstart < start)
				rstart = start;
			if (rend > end)
				rend = end;
			res->base = rstart;
			res->size = rend - rstart + 1;
			return 0;
		}
	}
	return -1;
}
back to top