https://github.com/torvalds/linux
Raw File
Tip revision: 9a351e30d72d409ec62c83f380e330e0baa584b4 authored by Linus Torvalds on 02 August 2005, 04:45:48 UTC
Linux v2.6.13-rc5
Tip revision: 9a351e3
filter.c
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
 * Author:
 *     Jay Schulist <jschlst@samba.org>
 *
 * Based on the design of:
 *     - The Berkeley Packet Filter
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <linux/errno.h>
#include <linux/timer.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <linux/filter.h>

/* No hurry in this branch */
static void *__load_pointer(struct sk_buff *skb, int k)
{
	u8 *ptr = NULL;

	if (k >= SKF_NET_OFF)
		ptr = skb->nh.raw + k - SKF_NET_OFF;
	else if (k >= SKF_LL_OFF)
		ptr = skb->mac.raw + k - SKF_LL_OFF;

	if (ptr >= skb->head && ptr < skb->tail)
		return ptr;
	return NULL;
}

static inline void *load_pointer(struct sk_buff *skb, int k,
                                 unsigned int size, void *buffer)
{
	if (k >= 0)
		return skb_header_pointer(skb, k, size, buffer);
	else {
		if (k >= SKF_AD_OFF)
			return NULL;
		return __load_pointer(skb, k);
	}
}

/**
 *	sk_run_filter	- 	run a filter on a socket
 *	@skb: buffer to run the filter on
 *	@filter: filter to apply
 *	@flen: length of filter
 *
 * Decode and apply filter instructions to the skb->data.
 * Return length to keep, 0 for none. skb is the data we are
 * filtering, filter is the array of filter instructions, and
 * len is the number of filter blocks in the array.
 */
 
int sk_run_filter(struct sk_buff *skb, struct sock_filter *filter, int flen)
{
	struct sock_filter *fentry;	/* We walk down these */
	void *ptr;
	u32 A = 0;	   		/* Accumulator */
	u32 X = 0;   			/* Index Register */
	u32 mem[BPF_MEMWORDS];		/* Scratch Memory Store */
	u32 tmp;
	int k;
	int pc;

	/*
	 * Process array of filter instructions.
	 */
	for (pc = 0; pc < flen; pc++) {
		fentry = &filter[pc];
			
		switch (fentry->code) {
		case BPF_ALU|BPF_ADD|BPF_X:
			A += X;
			continue;
		case BPF_ALU|BPF_ADD|BPF_K:
			A += fentry->k;
			continue;
		case BPF_ALU|BPF_SUB|BPF_X:
			A -= X;
			continue;
		case BPF_ALU|BPF_SUB|BPF_K:
			A -= fentry->k;
			continue;
		case BPF_ALU|BPF_MUL|BPF_X:
			A *= X;
			continue;
		case BPF_ALU|BPF_MUL|BPF_K:
			A *= fentry->k;
			continue;
		case BPF_ALU|BPF_DIV|BPF_X:
			if (X == 0)
				return 0;
			A /= X;
			continue;
		case BPF_ALU|BPF_DIV|BPF_K:
			if (fentry->k == 0)
				return 0;
			A /= fentry->k;
			continue;
		case BPF_ALU|BPF_AND|BPF_X:
			A &= X;
			continue;
		case BPF_ALU|BPF_AND|BPF_K:
			A &= fentry->k;
			continue;
		case BPF_ALU|BPF_OR|BPF_X:
			A |= X;
			continue;
		case BPF_ALU|BPF_OR|BPF_K:
			A |= fentry->k;
			continue;
		case BPF_ALU|BPF_LSH|BPF_X:
			A <<= X;
			continue;
		case BPF_ALU|BPF_LSH|BPF_K:
			A <<= fentry->k;
			continue;
		case BPF_ALU|BPF_RSH|BPF_X:
			A >>= X;
			continue;
		case BPF_ALU|BPF_RSH|BPF_K:
			A >>= fentry->k;
			continue;
		case BPF_ALU|BPF_NEG:
			A = -A;
			continue;
		case BPF_JMP|BPF_JA:
			pc += fentry->k;
			continue;
		case BPF_JMP|BPF_JGT|BPF_K:
			pc += (A > fentry->k) ? fentry->jt : fentry->jf;
			continue;
		case BPF_JMP|BPF_JGE|BPF_K:
			pc += (A >= fentry->k) ? fentry->jt : fentry->jf;
			continue;
		case BPF_JMP|BPF_JEQ|BPF_K:
			pc += (A == fentry->k) ? fentry->jt : fentry->jf;
			continue;
		case BPF_JMP|BPF_JSET|BPF_K:
			pc += (A & fentry->k) ? fentry->jt : fentry->jf;
			continue;
		case BPF_JMP|BPF_JGT|BPF_X:
			pc += (A > X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_JMP|BPF_JGE|BPF_X:
			pc += (A >= X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_JMP|BPF_JEQ|BPF_X:
			pc += (A == X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_JMP|BPF_JSET|BPF_X:
			pc += (A & X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_LD|BPF_W|BPF_ABS:
			k = fentry->k;
 load_w:
			ptr = load_pointer(skb, k, 4, &tmp);
			if (ptr != NULL) {
				A = ntohl(*(u32 *)ptr);
				continue;
			}
			return 0;
		case BPF_LD|BPF_H|BPF_ABS:
			k = fentry->k;
 load_h:
			ptr = load_pointer(skb, k, 2, &tmp);
			if (ptr != NULL) {
				A = ntohs(*(u16 *)ptr);
				continue;
			}
			return 0;
		case BPF_LD|BPF_B|BPF_ABS:
			k = fentry->k;
load_b:
			ptr = load_pointer(skb, k, 1, &tmp);
			if (ptr != NULL) {
				A = *(u8 *)ptr;
				continue;
			}
			return 0;
		case BPF_LD|BPF_W|BPF_LEN:
			A = skb->len;
			continue;
		case BPF_LDX|BPF_W|BPF_LEN:
			X = skb->len;
			continue;
		case BPF_LD|BPF_W|BPF_IND:
			k = X + fentry->k;
			goto load_w;
		case BPF_LD|BPF_H|BPF_IND:
			k = X + fentry->k;
			goto load_h;
		case BPF_LD|BPF_B|BPF_IND:
			k = X + fentry->k;
			goto load_b;
		case BPF_LDX|BPF_B|BPF_MSH:
			ptr = load_pointer(skb, fentry->k, 1, &tmp);
			if (ptr != NULL) {
				X = (*(u8 *)ptr & 0xf) << 2;
				continue;
			}
			return 0;
		case BPF_LD|BPF_IMM:
			A = fentry->k;
			continue;
		case BPF_LDX|BPF_IMM:
			X = fentry->k;
			continue;
		case BPF_LD|BPF_MEM:
			A = mem[fentry->k];
			continue;
		case BPF_LDX|BPF_MEM:
			X = mem[fentry->k];
			continue;
		case BPF_MISC|BPF_TAX:
			X = A;
			continue;
		case BPF_MISC|BPF_TXA:
			A = X;
			continue;
		case BPF_RET|BPF_K:
			return ((unsigned int)fentry->k);
		case BPF_RET|BPF_A:
			return ((unsigned int)A);
		case BPF_ST:
			mem[fentry->k] = A;
			continue;
		case BPF_STX:
			mem[fentry->k] = X;
			continue;
		default:
			/* Invalid instruction counts as RET */
			return 0;
		}

		/*
		 * Handle ancillary data, which are impossible
		 * (or very difficult) to get parsing packet contents.
		 */
		switch (k-SKF_AD_OFF) {
		case SKF_AD_PROTOCOL:
			A = htons(skb->protocol);
			continue;
		case SKF_AD_PKTTYPE:
			A = skb->pkt_type;
			continue;
		case SKF_AD_IFINDEX:
			A = skb->dev->ifindex;
			continue;
		default:
			return 0;
		}
	}

	return 0;
}

/**
 *	sk_chk_filter - verify socket filter code
 *	@filter: filter to verify
 *	@flen: length of filter
 *
 * Check the user's filter code. If we let some ugly
 * filter code slip through kaboom! The filter must contain
 * no references or jumps that are out of range, no illegal instructions
 * and no backward jumps. It must end with a RET instruction
 *
 * Returns 0 if the rule set is legal or a negative errno code if not.
 */
int sk_chk_filter(struct sock_filter *filter, int flen)
{
	struct sock_filter *ftest;
	int pc;

	if (((unsigned int)flen >= (~0U / sizeof(struct sock_filter))) || flen == 0)
		return -EINVAL;

	/* check the filter code now */
	for (pc = 0; pc < flen; pc++) {
		/* all jumps are forward as they are not signed */
		ftest = &filter[pc];
		if (BPF_CLASS(ftest->code) == BPF_JMP) {
			/* but they mustn't jump off the end */
			if (BPF_OP(ftest->code) == BPF_JA) {
				/*
				 * Note, the large ftest->k might cause loops.
				 * Compare this with conditional jumps below,
				 * where offsets are limited. --ANK (981016)
				 */
				if (ftest->k >= (unsigned)(flen-pc-1))
					return -EINVAL;
			} else {
				/* for conditionals both must be safe */
 				if (pc + ftest->jt +1 >= flen ||
				    pc + ftest->jf +1 >= flen)
					return -EINVAL;
			}
		}

		/* check that memory operations use valid addresses. */
		if (ftest->k >= BPF_MEMWORDS) {
			/* but it might not be a memory operation... */
			switch (ftest->code) {
			case BPF_ST:	
			case BPF_STX:	
			case BPF_LD|BPF_MEM:	
			case BPF_LDX|BPF_MEM:	
				return -EINVAL;
			}
		}
	}

	/*
	 * The program must end with a return. We don't care where they
	 * jumped within the script (its always forwards) but in the end
	 * they _will_ hit this.
	 */
        return (BPF_CLASS(filter[flen - 1].code) == BPF_RET) ? 0 : -EINVAL;
}

/**
 *	sk_attach_filter - attach a socket filter
 *	@fprog: the filter program
 *	@sk: the socket to use
 *
 * Attach the user's filter code. We first run some sanity checks on
 * it to make sure it does not explode on us later. If an error
 * occurs or there is insufficient memory for the filter a negative
 * errno code is returned. On success the return is zero.
 */
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
{
	struct sk_filter *fp; 
	unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
	int err;

	/* Make sure new filter is there and in the right amounts. */
        if (fprog->filter == NULL || fprog->len > BPF_MAXINSNS)
                return -EINVAL;

	fp = sock_kmalloc(sk, fsize+sizeof(*fp), GFP_KERNEL);
	if (!fp)
		return -ENOMEM;
	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
		sock_kfree_s(sk, fp, fsize+sizeof(*fp)); 
		return -EFAULT;
	}

	atomic_set(&fp->refcnt, 1);
	fp->len = fprog->len;

	err = sk_chk_filter(fp->insns, fp->len);
	if (!err) {
		struct sk_filter *old_fp;

		spin_lock_bh(&sk->sk_lock.slock);
		old_fp = sk->sk_filter;
		sk->sk_filter = fp;
		spin_unlock_bh(&sk->sk_lock.slock);
		fp = old_fp;
	}

	if (fp)
		sk_filter_release(sk, fp);
	return err;
}

EXPORT_SYMBOL(sk_chk_filter);
EXPORT_SYMBOL(sk_run_filter);
back to top