https://github.com/torvalds/linux
Raw File
Tip revision: cd52d1ee9a92587b242d946a2300a3245d3b885a authored by Linus Torvalds on 12 November 2005, 01:43:36 UTC
Linux v2.6.15-rc1
Tip revision: cd52d1e
cmpci.c
/*
 *      cmpci.c  --  C-Media PCI audio driver.
 *
 *      Copyright (C) 1999  C-media support (support@cmedia.com.tw)
 *
 *      Based on the PCI drivers by Thomas Sailer (sailer@ife.ee.ethz.ch)
 *
 * 	For update, visit:
 * 		http://www.cmedia.com.tw
 *
 *      This program is free software; you can redistribute it and/or modify
 *      it under the terms of the GNU General Public License as published by
 *      the Free Software Foundation; either version 2 of the License, or
 *      (at your option) any later version.
 *
 *      This program is distributed in the hope that it will be useful,
 *      but WITHOUT ANY WARRANTY; without even the implied warranty of
 *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *      GNU General Public License for more details.
 *
 *      You should have received a copy of the GNU General Public License
 *      along with this program; if not, write to the Free Software
 *      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * Special thanks to David C. Niemi, Jan Pfeifer
 *
 *
 * Module command line parameters:
 *   none so far
 *
 *
 *  Supported devices:
 *  /dev/dsp    standard /dev/dsp device, (mostly) OSS compatible
 *  /dev/mixer  standard /dev/mixer device, (mostly) OSS compatible
 *  /dev/midi   simple MIDI UART interface, no ioctl
 *
 *  The card has both an FM and a Wavetable synth, but I have to figure
 *  out first how to drive them...
 *
 *  Revision history
 *    06.05.98   0.1   Initial release
 *    10.05.98   0.2   Fixed many bugs, esp. ADC rate calculation
 *                     First stab at a simple midi interface (no bells&whistles)
 *    13.05.98   0.3   Fix stupid cut&paste error: set_adc_rate was called instead of
 *                     set_dac_rate in the FMODE_WRITE case in cm_open
 *                     Fix hwptr out of bounds (now mpg123 works)
 *    14.05.98   0.4   Don't allow excessive interrupt rates
 *    08.06.98   0.5   First release using Alan Cox' soundcore instead of miscdevice
 *    03.08.98   0.6   Do not include modversions.h
 *                     Now mixer behaviour can basically be selected between
 *                     "OSS documented" and "OSS actual" behaviour
 *    31.08.98   0.7   Fix realplayer problems - dac.count issues
 *    10.12.98   0.8   Fix drain_dac trying to wait on not yet initialized DMA
 *    16.12.98   0.9   Fix a few f_file & FMODE_ bugs
 *    06.01.99   0.10  remove the silly SA_INTERRUPT flag.
 *                     hopefully killed the egcs section type conflict
 *    12.03.99   0.11  cinfo.blocks should be reset after GETxPTR ioctl.
 *                     reported by Johan Maes <joma@telindus.be>
 *    22.03.99   0.12  return EAGAIN instead of EBUSY when O_NONBLOCK
 *                     read/write cannot be executed
 *    18.08.99   1.5   Only deallocate DMA buffer when unloading.
 *    02.09.99   1.6   Enable SPDIF LOOP
 *                     Change the mixer read back
 *    21.09.99   2.33  Use RCS version as driver version.
 *                     Add support for modem, S/PDIF loop and 4 channels.
 *                     (8738 only)
 *                     Fix bug cause x11amp cannot play.
 *
 *    Fixes:
 *    Arnaldo Carvalho de Melo <acme@conectiva.com.br>
 *    18/05/2001 - .bss nitpicks, fix a bug in set_dac_channels where it
 *    		   was calling prog_dmabuf with s->lock held, call missing
 *    		   unlock_kernel in cm_midi_release
 *    08/10/2001 - use set_current_state in some more places
 *
 *	Carlos Eduardo Gorges <carlos@techlinux.com.br>
 *	Fri May 25 2001
 *	- SMP support ( spin[un]lock* revision )
 *	- speaker mixer support
 *	Mon Aug 13 2001
 *	- optimizations and cleanups
 *
 *    03/01/2003 - open_mode fixes from Georg Acher <acher@in.tum.de>
 *	Simon Braunschmidt <brasimon@web.de>
 *     Sat Jan 31 2004
 *	- provide support for opl3 FM by releasing IO range after initialization
 *
 *    ChenLi Tien <cltien@cmedia.com.tw>
 *    Mar 9 2004
 *	- Fix S/PDIF out if spdif_loop enabled
 *	- Load opl3 driver if enabled (fmio in proper range)
 *	- Load mpu401 if enabled (mpuio in proper range)
 *    Apr 5 2004
 *	- Fix DUAL_DAC dma synchronization bug
 *	- Check exist FM/MPU401 I/O before activate.
 *	- Add AFTM_S16_BE format support, so MPlayer/Xine can play AC3/mutlichannel
 *	  on Mac
 *	- Change to support kernel 2.6 so only small patch needed
 *	- All parameters default to 0
 *	- Add spdif_out to send PCM through S/PDIF out jack
 *	- Add hw_copy to get 4-spaker output for general PCM/analog output
 *
 *    Stefan Thater <stefan.thaeter@gmx.de>
 *    Apr 5 2004
 *	- Fix mute single channel for CD/Line-in/AUX-in
 */
/*****************************************************************************/

#include <linux/config.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/sound.h>
#include <linux/slab.h>
#include <linux/soundcard.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/spinlock.h>
#include <linux/smp_lock.h>
#include <linux/bitops.h>
#include <linux/wait.h>
#include <linux/dma-mapping.h>

#include <asm/io.h>
#include <asm/page.h>
#include <asm/uaccess.h>

#ifdef CONFIG_SOUND_CMPCI_MIDI
#include "sound_config.h"
#include "mpu401.h"
#endif
#ifdef CONFIG_SOUND_CMPCI_FM
#include "opl3.h"
#endif
#ifdef CONFIG_SOUND_CMPCI_JOYSTICK
#include <linux/gameport.h>
#endif

/* --------------------------------------------------------------------- */
#undef OSS_DOCUMENTED_MIXER_SEMANTICS
#undef DMABYTEIO
#define	DBG(x) {}
/* --------------------------------------------------------------------- */

#define CM_MAGIC  ((PCI_VENDOR_ID_CMEDIA<<16)|PCI_DEVICE_ID_CMEDIA_CM8338A)

/* CM8338 registers definition ****************/

#define CODEC_CMI_FUNCTRL0		(0x00)
#define CODEC_CMI_FUNCTRL1		(0x04)
#define CODEC_CMI_CHFORMAT		(0x08)
#define CODEC_CMI_INT_HLDCLR		(0x0C)
#define CODEC_CMI_INT_STATUS		(0x10)
#define CODEC_CMI_LEGACY_CTRL		(0x14)
#define CODEC_CMI_MISC_CTRL		(0x18)
#define CODEC_CMI_TDMA_POS		(0x1C)
#define CODEC_CMI_MIXER			(0x20)
#define CODEC_SB16_DATA			(0x22)
#define CODEC_SB16_ADDR			(0x23)
#define CODEC_CMI_MIXER1		(0x24)
#define CODEC_CMI_MIXER2		(0x25)
#define CODEC_CMI_AUX_VOL		(0x26)
#define CODEC_CMI_MISC			(0x27)
#define CODEC_CMI_AC97			(0x28)

#define CODEC_CMI_CH0_FRAME1		(0x80)
#define CODEC_CMI_CH0_FRAME2		(0x84)
#define CODEC_CMI_CH1_FRAME1		(0x88)
#define CODEC_CMI_CH1_FRAME2		(0x8C)

#define CODEC_CMI_SPDIF_CTRL		(0x90)
#define CODEC_CMI_MISC_CTRL2		(0x92)

#define CODEC_CMI_EXT_REG		(0xF0)

/*  Mixer registers for SB16 ******************/

#define DSP_MIX_DATARESETIDX		((unsigned char)(0x00))

#define DSP_MIX_MASTERVOLIDX_L		((unsigned char)(0x30))
#define DSP_MIX_MASTERVOLIDX_R		((unsigned char)(0x31))
#define DSP_MIX_VOICEVOLIDX_L		((unsigned char)(0x32))
#define DSP_MIX_VOICEVOLIDX_R		((unsigned char)(0x33))
#define DSP_MIX_FMVOLIDX_L		((unsigned char)(0x34))
#define DSP_MIX_FMVOLIDX_R		((unsigned char)(0x35))
#define DSP_MIX_CDVOLIDX_L		((unsigned char)(0x36))
#define DSP_MIX_CDVOLIDX_R		((unsigned char)(0x37))
#define DSP_MIX_LINEVOLIDX_L		((unsigned char)(0x38))
#define DSP_MIX_LINEVOLIDX_R		((unsigned char)(0x39))

#define DSP_MIX_MICVOLIDX		((unsigned char)(0x3A))
#define DSP_MIX_SPKRVOLIDX		((unsigned char)(0x3B))

#define DSP_MIX_OUTMIXIDX		((unsigned char)(0x3C))

#define DSP_MIX_ADCMIXIDX_L		((unsigned char)(0x3D))
#define DSP_MIX_ADCMIXIDX_R		((unsigned char)(0x3E))

#define DSP_MIX_INGAINIDX_L		((unsigned char)(0x3F))
#define DSP_MIX_INGAINIDX_R		((unsigned char)(0x40))
#define DSP_MIX_OUTGAINIDX_L		((unsigned char)(0x41))
#define DSP_MIX_OUTGAINIDX_R		((unsigned char)(0x42))

#define DSP_MIX_AGCIDX			((unsigned char)(0x43))

#define DSP_MIX_TREBLEIDX_L		((unsigned char)(0x44))
#define DSP_MIX_TREBLEIDX_R		((unsigned char)(0x45))
#define DSP_MIX_BASSIDX_L		((unsigned char)(0x46))
#define DSP_MIX_BASSIDX_R		((unsigned char)(0x47))
#define DSP_MIX_EXTENSION		((unsigned char)(0xf0))
// pseudo register for AUX
#define	DSP_MIX_AUXVOL_L		((unsigned char)(0x50))
#define	DSP_MIX_AUXVOL_R		((unsigned char)(0x51))

// I/O length
#define CM_EXTENT_CODEC	  0x100
#define CM_EXTENT_MIDI	  0x2
#define CM_EXTENT_SYNTH	  0x4
#define CM_EXTENT_GAME	  0x8

// Function Control Register 0 (00h)
#define CHADC0    	0x01
#define CHADC1    	0x02
#define PAUSE0	  	0x04
#define PAUSE1	  	0x08

// Function Control Register 0+2 (02h)
#define CHEN0     	0x01
#define CHEN1     	0x02
#define RST_CH0	  	0x04
#define RST_CH1	  	0x08

// Function Control Register 1 (04h)
#define JYSTK_EN	0x02
#define UART_EN		0x04
#define	SPDO2DAC	0x40
#define	SPDFLOOP	0x80

// Function Control Register 1+1 (05h)
#define	SPDF_0		0x01
#define	SPDF_1		0x02
#define	ASFC		0x1c
#define	DSFC		0xe0
#define	SPDIF2DAC	(SPDF_1 << 8 | SPDO2DAC)

// Channel Format Register (08h)
#define CM_CFMT_STEREO	0x01
#define CM_CFMT_16BIT	0x02
#define CM_CFMT_MASK	0x03
#define	POLVALID	0x20
#define	INVSPDIFI	0x80

// Channel Format Register+2 (0ah)
#define SPD24SEL	0x20

// Channel Format Register+3 (0bh)
#define CHB3D		0x20
#define CHB3D5C		0x80

// Interrupt Hold/Clear Register+2 (0eh)
#define	CH0_INT_EN	0x01
#define	CH1_INT_EN	0x02

// Interrupt Register (10h)
#define CHINT0		0x01
#define CHINT1		0x02
#define	CH0BUSY		0x04
#define	CH1BUSY		0x08

// Legacy Control/Status Register+1 (15h)
#define	EXBASEN		0x10
#define	BASE2LIN	0x20
#define	CENTR2LIN	0x40
#define	CB2LIN		(BASE2LIN | CENTR2LIN)
#define	CHB3D6C		0x80

// Legacy Control/Status Register+2 (16h)
#define	DAC2SPDO	0x20
#define	SPDCOPYRHT	0x40
#define	ENSPDOUT	0x80

// Legacy Control/Status Register+3 (17h)
#define	FMSEL		0x03
#define	VSBSEL		0x0c
#define	VMPU		0x60
#define	NXCHG		0x80

// Miscellaneous Control Register (18h)
#define	REAR2LIN	0x20
#define	MUTECH1		0x40
#define	ENCENTER	0x80

// Miscellaneous Control Register+1 (19h)
#define	SELSPDIFI2	0x01
#define	SPDF_AC97	0x80

// Miscellaneous Control Register+2 (1ah)
#define	AC3_EN		0x04
#define	FM_EN		0x08
#define	SPD32SEL	0x20
#define	XCHGDAC		0x40
#define	ENDBDAC		0x80

// Miscellaneous Control Register+3 (1bh)
#define	SPDIFI48K	0x01
#define	SPDO5V		0x02
#define	N4SPK3D		0x04
#define	RESET		0x40
#define	PWD		0x80
#define	SPDIF48K	(SPDIFI48K << 24 | SPDF_AC97 << 8)

// Mixer1 (24h)
#define	CDPLAY		0x01
#define	X3DEN		0x02
#define	REAR2FRONT	0x10
#define	SPK4		0x20
#define	WSMUTE		0x40
#define	FMMUTE		0x80

// Miscellaneous Register (27h)
#define	SPDVALID	0x02
#define	CENTR2MIC	0x04

// Miscellaneous Register2 (92h)
#define	SPD32KFMT	0x10

#define CM_CFMT_DACSHIFT   2
#define CM_CFMT_ADCSHIFT   0
#define CM_FREQ_DACSHIFT   5
#define CM_FREQ_ADCSHIFT   2
#define	RSTDAC	RST_CH1
#define	RSTADC	RST_CH0
#define	ENDAC	CHEN1
#define	ENADC	CHEN0
#define	PAUSEDAC	PAUSE1
#define	PAUSEADC	PAUSE0
#define CODEC_CMI_ADC_FRAME1	CODEC_CMI_CH0_FRAME1
#define CODEC_CMI_ADC_FRAME2	CODEC_CMI_CH0_FRAME2
#define CODEC_CMI_DAC_FRAME1	CODEC_CMI_CH1_FRAME1
#define CODEC_CMI_DAC_FRAME2	CODEC_CMI_CH1_FRAME2
#define	DACINT	CHINT1
#define	ADCINT	CHINT0
#define	DACBUSY	CH1BUSY
#define	ADCBUSY	CH0BUSY
#define	ENDACINT	CH1_INT_EN
#define	ENADCINT	CH0_INT_EN

static const unsigned sample_size[] = { 1, 2, 2, 4 };
static const unsigned sample_shift[]	= { 0, 1, 1, 2 };

#define SND_DEV_DSP16   5

#define NR_DEVICE 3		/* maximum number of devices */

#define	set_dac1_rate	set_adc_rate
#define	set_dac1_rate_unlocked	set_adc_rate_unlocked
#define	stop_dac1	stop_adc
#define	stop_dac1_unlocked	stop_adc_unlocked
#define	get_dmadac1	get_dmaadc

static unsigned int devindex = 0;

//*********************************************/

struct cm_state {
	/* magic */
	unsigned int magic;

	/* list of cmedia devices */
	struct list_head devs;

	/* the corresponding pci_dev structure */
	struct pci_dev *dev;

	int dev_audio;			/* soundcore stuff */
	int dev_mixer;

	unsigned int iosb, iobase, iosynth,
			 iomidi, iogame, irq;	/* hardware resources */
	unsigned short deviceid;		/* pci_id */

        struct {				/* mixer stuff */
                unsigned int modcnt;
		unsigned short vol[13];
        } mix;

	unsigned int rateadc, ratedac;		/* wave stuff */
	unsigned char fmt, enable;

	spinlock_t lock;
	struct semaphore open_sem;
	mode_t open_mode;
	wait_queue_head_t open_wait;

	struct dmabuf {
		void *rawbuf;
		dma_addr_t dmaaddr;
		unsigned buforder;
		unsigned numfrag;
		unsigned fragshift;
		unsigned hwptr, swptr;
		unsigned total_bytes;
		int count;
		unsigned error;		/* over/underrun */
		wait_queue_head_t wait;

		unsigned fragsize;	/* redundant, but makes calculations easier */
		unsigned dmasize;
		unsigned fragsamples;
		unsigned dmasamples;

		unsigned mapped:1;	/* OSS stuff */
		unsigned ready:1;
		unsigned endcleared:1;
		unsigned enabled:1;
		unsigned ossfragshift;
		int ossmaxfrags;
		unsigned subdivision;
	} dma_dac, dma_adc;

#ifdef CONFIG_SOUND_CMPCI_MIDI
	int midi_devc;
	struct address_info mpu_data;
#endif
#ifdef CONFIG_SOUND_CMPCI_JOYSTICK
	struct gameport *gameport;
#endif

	int	chip_version;
	int	max_channels;
	int	curr_channels;
	int	capability;		/* HW capability, various for chip versions */

	int	status;			/* HW or SW state */

	int	spdif_counter;		/* spdif frame counter */
};

/* flags used for capability */
#define	CAN_AC3_HW		0x00000001		/* 037 or later */
#define	CAN_AC3_SW		0x00000002		/* 033 or later */
#define	CAN_AC3			(CAN_AC3_HW | CAN_AC3_SW)
#define CAN_DUAL_DAC		0x00000004		/* 033 or later */
#define	CAN_MULTI_CH_HW		0x00000008		/* 039 or later */
#define	CAN_MULTI_CH		(CAN_MULTI_CH_HW | CAN_DUAL_DAC)
#define	CAN_LINE_AS_REAR	0x00000010		/* 033 or later */
#define	CAN_LINE_AS_BASS	0x00000020		/* 039 or later */
#define	CAN_MIC_AS_BASS		0x00000040		/* 039 or later */

/* flags used for status */
#define	DO_AC3_HW		0x00000001
#define	DO_AC3_SW		0x00000002
#define	DO_AC3			(DO_AC3_HW | DO_AC3_SW)
#define	DO_DUAL_DAC		0x00000004
#define	DO_MULTI_CH_HW		0x00000008
#define	DO_MULTI_CH		(DO_MULTI_CH_HW | DO_DUAL_DAC)
#define	DO_LINE_AS_REAR		0x00000010		/* 033 or later */
#define	DO_LINE_AS_BASS		0x00000020		/* 039 or later */
#define	DO_MIC_AS_BASS		0x00000040		/* 039 or later */
#define	DO_SPDIF_OUT		0x00000100
#define	DO_SPDIF_IN		0x00000200
#define	DO_SPDIF_LOOP		0x00000400
#define	DO_BIGENDIAN_W		0x00001000		/* used in PowerPC */
#define	DO_BIGENDIAN_R		0x00002000		/* used in PowerPC */

static LIST_HEAD(devs);

static	int	mpuio;
static	int	fmio;
static	int	joystick;
static	int	spdif_inverse;
static	int	spdif_loop;
static	int	spdif_out;
static	int	use_line_as_rear;
static	int	use_line_as_bass;
static	int	use_mic_as_bass;
static	int	mic_boost;
static	int	hw_copy;
module_param(mpuio, int, 0);
module_param(fmio, int, 0);
module_param(joystick, bool, 0);
module_param(spdif_inverse, bool, 0);
module_param(spdif_loop, bool, 0);
module_param(spdif_out, bool, 0);
module_param(use_line_as_rear, bool, 0);
module_param(use_line_as_bass, bool, 0);
module_param(use_mic_as_bass, bool, 0);
module_param(mic_boost, bool, 0);
module_param(hw_copy, bool, 0);
MODULE_PARM_DESC(mpuio, "(0x330, 0x320, 0x310, 0x300) Base of MPU-401, 0 to disable");
MODULE_PARM_DESC(fmio, "(0x388, 0x3C8, 0x3E0) Base of OPL3, 0 to disable");
MODULE_PARM_DESC(joystick, "(1/0) Enable joystick interface, still need joystick driver");
MODULE_PARM_DESC(spdif_inverse, "(1/0) Invert S/PDIF-in signal");
MODULE_PARM_DESC(spdif_loop, "(1/0) Route S/PDIF-in to S/PDIF-out directly");
MODULE_PARM_DESC(spdif_out, "(1/0) Send PCM to S/PDIF-out (PCM volume will not function)");
MODULE_PARM_DESC(use_line_as_rear, "(1/0) Use line-in jack as rear-out");
MODULE_PARM_DESC(use_line_as_bass, "(1/0) Use line-in jack as bass/center");
MODULE_PARM_DESC(use_mic_as_bass, "(1/0) Use mic-in jack as bass/center");
MODULE_PARM_DESC(mic_boost, "(1/0) Enable microphone boost");
MODULE_PARM_DESC(hw_copy, "Copy front channel to surround channel");

/* --------------------------------------------------------------------- */

static inline unsigned ld2(unsigned int x)
{
	unsigned exp=16,l=5,r=0;
	static const unsigned num[]={0x2,0x4,0x10,0x100,0x10000};

	/* num: 2, 4, 16, 256, 65536 */
	/* exp: 1, 2,  4,   8,    16 */

	while(l--) {
		if( x >= num[l] ) {
			if(num[l]>2) x >>= exp;
			r+=exp;
		}
		exp>>=1;
	}

	return r;
}

/* --------------------------------------------------------------------- */

static void maskb(unsigned int addr, unsigned int mask, unsigned int value)
{
	outb((inb(addr) & mask) | value, addr);
}

static void maskw(unsigned int addr, unsigned int mask, unsigned int value)
{
	outw((inw(addr) & mask) | value, addr);
}

static void maskl(unsigned int addr, unsigned int mask, unsigned int value)
{
	outl((inl(addr) & mask) | value, addr);
}

static void set_dmadac1(struct cm_state *s, unsigned int addr, unsigned int count)
{
	if (addr)
	    outl(addr, s->iobase + CODEC_CMI_ADC_FRAME1);
	outw(count - 1, s->iobase + CODEC_CMI_ADC_FRAME2);
	maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~CHADC0, 0);
}

static void set_dmaadc(struct cm_state *s, unsigned int addr, unsigned int count)
{
	outl(addr, s->iobase + CODEC_CMI_ADC_FRAME1);
	outw(count - 1, s->iobase + CODEC_CMI_ADC_FRAME2);
	maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~0, CHADC0);
}

static void set_dmadac(struct cm_state *s, unsigned int addr, unsigned int count)
{
	outl(addr, s->iobase + CODEC_CMI_DAC_FRAME1);
	outw(count - 1, s->iobase + CODEC_CMI_DAC_FRAME2);
	maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~CHADC1, 0);
	if (s->status & DO_DUAL_DAC)
		set_dmadac1(s, 0, count);
}

static void set_countadc(struct cm_state *s, unsigned count)
{
	outw(count - 1, s->iobase + CODEC_CMI_ADC_FRAME2 + 2);
}

static void set_countdac(struct cm_state *s, unsigned count)
{
	outw(count - 1, s->iobase + CODEC_CMI_DAC_FRAME2 + 2);
	if (s->status & DO_DUAL_DAC)
	    set_countadc(s, count);
}

static unsigned get_dmadac(struct cm_state *s)
{
	unsigned int curr_addr;

	curr_addr = inw(s->iobase + CODEC_CMI_DAC_FRAME2) + 1;
	curr_addr <<= sample_shift[(s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK];
	curr_addr = s->dma_dac.dmasize - curr_addr;

	return curr_addr;
}

static unsigned get_dmaadc(struct cm_state *s)
{
	unsigned int curr_addr;

	curr_addr = inw(s->iobase + CODEC_CMI_ADC_FRAME2) + 1;
	curr_addr <<= sample_shift[(s->fmt >> CM_CFMT_ADCSHIFT) & CM_CFMT_MASK];
	curr_addr = s->dma_adc.dmasize - curr_addr;

	return curr_addr;
}

static void wrmixer(struct cm_state *s, unsigned char idx, unsigned char data)
{
	unsigned char regval, pseudo;

	// pseudo register
	if (idx == DSP_MIX_AUXVOL_L) {
		data >>= 4;
		data &= 0x0f;
		regval = inb(s->iobase + CODEC_CMI_AUX_VOL) & ~0x0f;
		outb(regval | data, s->iobase + CODEC_CMI_AUX_VOL);
		return;
	}
	if (idx == DSP_MIX_AUXVOL_R) {
		data &= 0xf0;
		regval = inb(s->iobase + CODEC_CMI_AUX_VOL) & ~0xf0;
		outb(regval | data, s->iobase + CODEC_CMI_AUX_VOL);
		return;
	}
	outb(idx, s->iobase + CODEC_SB16_ADDR);
	udelay(10);
	// pseudo bits
	if (idx == DSP_MIX_OUTMIXIDX) {
		pseudo = data & ~0x1f;
		pseudo >>= 1;
		regval = inb(s->iobase + CODEC_CMI_MIXER2) & ~0x30;
		outb(regval | pseudo, s->iobase + CODEC_CMI_MIXER2);
	}
	if (idx == DSP_MIX_ADCMIXIDX_L) {
		pseudo = data & 0x80;
		pseudo >>= 1;
		regval = inb(s->iobase + CODEC_CMI_MIXER2) & ~0x40;
		outb(regval | pseudo, s->iobase + CODEC_CMI_MIXER2);
	}
	if (idx == DSP_MIX_ADCMIXIDX_R) {
		pseudo = data & 0x80;
		regval = inb(s->iobase + CODEC_CMI_MIXER2) & ~0x80;
		outb(regval | pseudo, s->iobase + CODEC_CMI_MIXER2);
	}
	outb(data, s->iobase + CODEC_SB16_DATA);
	udelay(10);
}

static unsigned char rdmixer(struct cm_state *s, unsigned char idx)
{
	unsigned char v, pseudo;

	// pseudo register
	if (idx == DSP_MIX_AUXVOL_L) {
		v = inb(s->iobase + CODEC_CMI_AUX_VOL) & 0x0f;
		v <<= 4;
		return v;
	}
	if (idx == DSP_MIX_AUXVOL_L) {
		v = inb(s->iobase + CODEC_CMI_AUX_VOL) & 0xf0;
		return v;
	}
	outb(idx, s->iobase + CODEC_SB16_ADDR);
	udelay(10);
	v = inb(s->iobase + CODEC_SB16_DATA);
	udelay(10);
	// pseudo bits
	if (idx == DSP_MIX_OUTMIXIDX) {
		pseudo = inb(s->iobase + CODEC_CMI_MIXER2) & 0x30;
		pseudo <<= 1;
		v |= pseudo;
	}
	if (idx == DSP_MIX_ADCMIXIDX_L) {
		pseudo = inb(s->iobase + CODEC_CMI_MIXER2) & 0x40;
		pseudo <<= 1;
		v |= pseudo;
	}
	if (idx == DSP_MIX_ADCMIXIDX_R) {
		pseudo = inb(s->iobase + CODEC_CMI_MIXER2) & 0x80;
		v |= pseudo;
	}
	return v;
}

static void set_fmt_unlocked(struct cm_state *s, unsigned char mask, unsigned char data)
{
	if (mask && s->chip_version > 0) {	/* 8338 cannot keep this */
		s->fmt = inb(s->iobase + CODEC_CMI_CHFORMAT);
		udelay(10);
	}
	s->fmt = (s->fmt & mask) | data;
	outb(s->fmt, s->iobase + CODEC_CMI_CHFORMAT);
	udelay(10);
}

static void set_fmt(struct cm_state *s, unsigned char mask, unsigned char data)
{
	unsigned long flags;

	spin_lock_irqsave(&s->lock, flags);
	set_fmt_unlocked(s,mask,data);
	spin_unlock_irqrestore(&s->lock, flags);
}

static void frobindir(struct cm_state *s, unsigned char idx, unsigned char mask, unsigned char data)
{
	outb(idx, s->iobase + CODEC_SB16_ADDR);
	udelay(10);
	outb((inb(s->iobase + CODEC_SB16_DATA) & mask) | data, s->iobase + CODEC_SB16_DATA);
	udelay(10);
}

static struct {
	unsigned	rate;
	unsigned	lower;
	unsigned	upper;
	unsigned char	freq;
} rate_lookup[] =
{
	{ 5512,		(0 + 5512) / 2,		(5512 + 8000) / 2,	0 },
	{ 8000,		(5512 + 8000) / 2,	(8000 + 11025) / 2,	4 },
	{ 11025,	(8000 + 11025) / 2,	(11025 + 16000) / 2,	1 },
	{ 16000,	(11025 + 16000) / 2,	(16000 + 22050) / 2,	5 },
	{ 22050,	(16000 + 22050) / 2,	(22050 + 32000) / 2,	2 },
	{ 32000,	(22050 + 32000) / 2,	(32000 + 44100) / 2,	6 },
	{ 44100,	(32000 + 44100) / 2,	(44100 + 48000) / 2,	3 },
	{ 48000,	(44100 + 48000) / 2,	48000,			7 }
};

static void set_spdif_copyright(struct cm_state *s, int spdif_copyright)
{
	/* enable SPDIF-in Copyright */
	maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 2, ~SPDCOPYRHT, spdif_copyright ? SPDCOPYRHT : 0);
}

static void set_spdif_loop(struct cm_state *s, int spdif_loop)
{
	/* enable SPDIF loop */
	if (spdif_loop) {
		s->status |= DO_SPDIF_LOOP;
		/* turn on spdif-in to spdif-out */
		maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, SPDFLOOP);
	} else {
		s->status &= ~DO_SPDIF_LOOP;
		/* turn off spdif-in to spdif-out */
		maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~SPDFLOOP, 0);
	}
}

static void set_spdif_monitor(struct cm_state *s, int channel)
{
	// SPDO2DAC
	maskw(s->iobase + CODEC_CMI_FUNCTRL1, ~SPDO2DAC, channel == 2 ? SPDO2DAC : 0);
	// CDPLAY
	if (s->chip_version >= 39)
		maskb(s->iobase + CODEC_CMI_MIXER1, ~CDPLAY, channel ? CDPLAY : 0);
}

static void set_spdifout_level(struct cm_state *s, int level5v)
{
	/* SPDO5V */
	if (s->chip_version > 0)
		maskb(s->iobase + CODEC_CMI_MISC_CTRL + 3, ~SPDO5V, level5v ? SPDO5V : 0);
}

static void set_spdifin_inverse(struct cm_state *s, int spdif_inverse)
{
	if (s->chip_version == 0)	/* 8338 has not this feature */
		return;
	if (spdif_inverse) {
		/* turn on spdif-in inverse */
		if (s->chip_version >= 39)
			maskb(s->iobase + CODEC_CMI_CHFORMAT, ~0, INVSPDIFI);
		else
			maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, 1);
	} else {
		/* turn off spdif-ininverse */
		if (s->chip_version >= 39)
			maskb(s->iobase + CODEC_CMI_CHFORMAT, ~INVSPDIFI, 0);
		else
			maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~1, 0);
	}
}

static void set_spdifin_channel2(struct cm_state *s, int channel2)
{
	/* SELSPDIFI2 */
	if (s->chip_version >= 39)
		maskb(s->iobase + CODEC_CMI_MISC_CTRL + 1, ~SELSPDIFI2, channel2 ? SELSPDIFI2 : 0);
}

static void set_spdifin_valid(struct cm_state *s, int valid)
{
	/* SPDVALID */
	maskb(s->iobase + CODEC_CMI_MISC, ~SPDVALID, valid ? SPDVALID : 0);
}

static void set_spdifout_unlocked(struct cm_state *s, unsigned rate)
{
	if (rate != 48000 && rate != 44100)
		rate = 0;
	if (rate == 48000 || rate == 44100) {
		set_spdif_loop(s, 0);
		// SPDF_1
		maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~0, SPDF_1);
		// SPDIFI48K SPDF_AC97
		maskl(s->iobase + CODEC_CMI_MISC_CTRL, ~SPDIF48K, rate == 48000 ? SPDIF48K : 0);
		if (s->chip_version >= 55)
		// SPD32KFMT
			maskb(s->iobase + CODEC_CMI_MISC_CTRL2, ~SPD32KFMT, rate == 48000 ? SPD32KFMT : 0);
		if (s->chip_version > 0)
		// ENSPDOUT
			maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 2, ~0, ENSPDOUT);
		// monitor SPDIF out
		set_spdif_monitor(s, 2);
		s->status |= DO_SPDIF_OUT;
	} else {
		maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~SPDF_1, 0);
		maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 2, ~ENSPDOUT, 0);
		// monitor none
		set_spdif_monitor(s, 0);
		s->status &= ~DO_SPDIF_OUT;
	}
}

static void set_spdifout(struct cm_state *s, unsigned rate)
{
	unsigned long flags;

	spin_lock_irqsave(&s->lock, flags);
	set_spdifout_unlocked(s,rate);
	spin_unlock_irqrestore(&s->lock, flags);
}

static void set_spdifin_unlocked(struct cm_state *s, unsigned rate)
{
	if (rate == 48000 || rate == 44100) {
		// SPDF_1
		maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~0, SPDF_1);
		// SPDIFI48K SPDF_AC97
		maskl(s->iobase + CODEC_CMI_MISC_CTRL, ~SPDIF48K, rate == 48000 ? SPDIF48K : 0);
		s->status |= DO_SPDIF_IN;
	} else {
		maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~SPDF_1, 0);
		s->status &= ~DO_SPDIF_IN;
	}
}

static void set_spdifin(struct cm_state *s, unsigned rate)
{
	unsigned long flags;

	spin_lock_irqsave(&s->lock, flags);
	set_spdifin_unlocked(s,rate);
	spin_unlock_irqrestore(&s->lock, flags);
}

/* find parity for bit 4~30 */
static unsigned parity(unsigned data)
{
	unsigned parity = 0;
	int counter = 4;

	data >>= 4;	// start from bit 4
	while (counter <= 30) {
		if (data & 1)
			parity++;
		data >>= 1;
		counter++;
	}
	return parity & 1;
}

static void set_ac3_unlocked(struct cm_state *s, unsigned rate)
{
	if (!(s->capability & CAN_AC3))
		return;
	/* enable AC3 */
	if (rate && rate != 44100)
		rate = 48000;
	if (rate == 48000 || rate == 44100) {
		// mute DAC
		maskb(s->iobase + CODEC_CMI_MIXER1, ~0, WSMUTE);
		if (s->chip_version >= 39)
			maskb(s->iobase + CODEC_CMI_MISC_CTRL, ~0, MUTECH1);
		// AC3EN for 039, 0x04
		if (s->chip_version >= 39) {
			maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, AC3_EN);
			if (s->chip_version == 55)
				maskb(s->iobase + CODEC_CMI_SPDIF_CTRL, ~2, 0);
		// AC3EN for 037, 0x10
		} else if (s->chip_version == 37)
			maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, 0x10);
		if (s->capability & CAN_AC3_HW) {
			// SPD24SEL for 039, 0x20, but cannot be set
			if (s->chip_version == 39)
				maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, SPD24SEL);
			// SPD24SEL for 037, 0x02
			else if (s->chip_version == 37)
				maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, 0x02);
			if (s->chip_version >= 39)
				maskb(s->iobase + CODEC_CMI_MIXER1, ~CDPLAY, 0);

			s->status |= DO_AC3_HW;
		 } else {
			// SPD32SEL for 037 & 039
			maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, SPD32SEL);
			// set 176K sample rate to fix 033 HW bug
			if (s->chip_version == 33) {
				if (rate == 48000)
					maskb(s->iobase + CODEC_CMI_CHFORMAT + 1, ~0, 0x08);
				else
					maskb(s->iobase + CODEC_CMI_CHFORMAT + 1, ~0x08, 0);
			}
			s->status |= DO_AC3_SW;
		}
	} else {
		maskb(s->iobase + CODEC_CMI_MIXER1, ~WSMUTE, 0);
		if (s->chip_version >= 39)
			maskb(s->iobase + CODEC_CMI_MISC_CTRL, ~MUTECH1, 0);
		maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~(SPD24SEL|0x12), 0);
		maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~(SPD32SEL|AC3_EN), 0);
		if (s->chip_version == 33)
			maskb(s->iobase + CODEC_CMI_CHFORMAT + 1, ~0x08, 0);
		if (s->chip_version >= 39)
			maskb(s->iobase + CODEC_CMI_MIXER1, ~0, CDPLAY);
		s->status &= ~DO_AC3;
	}
	s->spdif_counter = 0;
}

static void set_line_as_rear(struct cm_state *s, int use_line_as_rear)
{
	if (!(s->capability & CAN_LINE_AS_REAR))
		return;
	if (use_line_as_rear) {
		maskb(s->iobase + CODEC_CMI_MIXER1, ~0, SPK4);
		s->status |= DO_LINE_AS_REAR;
	} else {
		maskb(s->iobase + CODEC_CMI_MIXER1, ~SPK4, 0);
		s->status &= ~DO_LINE_AS_REAR;
	}
}

static void set_line_as_bass(struct cm_state *s, int use_line_as_bass)
{
	if (!(s->capability & CAN_LINE_AS_BASS))
		return;
	if (use_line_as_bass) {
		maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~0, CB2LIN);
		s->status |= DO_LINE_AS_BASS;
	} else {
		maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~CB2LIN, 0);
		s->status &= ~DO_LINE_AS_BASS;
	}
}

static void set_mic_as_bass(struct cm_state *s, int use_mic_as_bass)
{
	if (!(s->capability & CAN_MIC_AS_BASS))
		return;
	if (use_mic_as_bass) {
		maskb(s->iobase + CODEC_CMI_MISC, ~0, 0x04);
		s->status |= DO_MIC_AS_BASS;
	} else {
		maskb(s->iobase + CODEC_CMI_MISC, ~0x04, 0);
		s->status &= ~DO_MIC_AS_BASS;
	}
}

static void set_hw_copy(struct cm_state *s, int hw_copy)
{
    	if (s->max_channels > 2 && hw_copy)
		maskb(s->iobase + CODEC_CMI_MISC_CTRL + 3, ~0, N4SPK3D);
    	else
		maskb(s->iobase + CODEC_CMI_MISC_CTRL + 3, ~N4SPK3D, 0);
}

static void set_ac3(struct cm_state *s, unsigned rate)
{
	unsigned long flags;

	spin_lock_irqsave(&s->lock, flags);
	set_spdifout_unlocked(s, rate);
	set_ac3_unlocked(s, rate);
	spin_unlock_irqrestore(&s->lock, flags);
}

static int trans_ac3(struct cm_state *s, void *dest, const char __user *source, int size)
{
	int   i = size / 2;
	unsigned long data;
	unsigned short data16;
	unsigned long *dst = (unsigned long *) dest;
	unsigned short __user *src = (unsigned short __user *)source;
	int err;

	do {
		if ((err = __get_user(data16, src++)))
			return err;
		data = (unsigned long)le16_to_cpu(data16);
		data <<= 12;			// ok for 16-bit data
		if (s->spdif_counter == 2 || s->spdif_counter == 3)
			data |= 0x40000000;	// indicate AC-3 raw data
		if (parity(data))
			data |= 0x80000000;	// parity
		if (s->spdif_counter == 0)
			data |= 3;		// preamble 'M'
		else if (s->spdif_counter & 1)
			data |= 5;		// odd, 'W'
		else
			data |= 9;		// even, 'M'
		*dst++ = cpu_to_le32(data);
		s->spdif_counter++;
		if (s->spdif_counter == 384)
			s->spdif_counter = 0;
	} while (--i);

	return 0;
}

static void set_adc_rate_unlocked(struct cm_state *s, unsigned rate)
{
	unsigned char freq = 4;
	int	i;

	if (rate > 48000)
		rate = 48000;
	if (rate < 8000)
		rate = 8000;
	for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++) {
		if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper) {
			rate = rate_lookup[i].rate;
			freq = rate_lookup[i].freq;
			break;
	    	}
	}
	s->rateadc = rate;
	freq <<= CM_FREQ_ADCSHIFT;

	maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~ASFC, freq);
}

static void set_adc_rate(struct cm_state *s, unsigned rate)
{
	unsigned long flags;
	unsigned char freq = 4;
	int	i;

	if (rate > 48000)
		rate = 48000;
	if (rate < 8000)
		rate = 8000;
	for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++) {
		if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper) {
			rate = rate_lookup[i].rate;
			freq = rate_lookup[i].freq;
			break;
	    	}
	}
	s->rateadc = rate;
	freq <<= CM_FREQ_ADCSHIFT;

	spin_lock_irqsave(&s->lock, flags);
	maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~ASFC, freq);
	spin_unlock_irqrestore(&s->lock, flags);
}

static void set_dac_rate(struct cm_state *s, unsigned rate)
{
	unsigned long flags;
	unsigned char freq = 4;
	int	i;

	if (rate > 48000)
		rate = 48000;
	if (rate < 8000)
		rate = 8000;
	for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++) {
		if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper) {
			rate = rate_lookup[i].rate;
			freq = rate_lookup[i].freq;
			break;
	    	}
	}
	s->ratedac = rate;
	freq <<= CM_FREQ_DACSHIFT;

	spin_lock_irqsave(&s->lock, flags);
	maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~DSFC, freq);
	spin_unlock_irqrestore(&s->lock, flags);

	if (s->curr_channels <= 2 && spdif_out)
		set_spdifout(s, rate);
	if (s->status & DO_DUAL_DAC)
		set_dac1_rate(s, rate);
}

/* --------------------------------------------------------------------- */
static inline void reset_adc(struct cm_state *s)
{
	/* reset bus master */
	outb(s->enable | RSTADC, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
	udelay(10);
	outb(s->enable & ~RSTADC, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
}

static inline void reset_dac(struct cm_state *s)
{
	/* reset bus master */
	outb(s->enable | RSTDAC, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
	udelay(10);
	outb(s->enable & ~RSTDAC, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
	if (s->status & DO_DUAL_DAC)
		reset_adc(s);
}

static inline void pause_adc(struct cm_state *s)
{
	maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~0, PAUSEADC);
}

static inline void pause_dac(struct cm_state *s)
{
	maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~0, PAUSEDAC);
	if (s->status & DO_DUAL_DAC)
		pause_adc(s);
}

static inline void disable_adc(struct cm_state *s)
{
	/* disable channel */
	s->enable &= ~ENADC;
	outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
	reset_adc(s);
}

static inline void disable_dac(struct cm_state *s)
{
	/* disable channel */
	s->enable &= ~ENDAC;
	outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
	reset_dac(s);
	if (s->status & DO_DUAL_DAC)
		disable_adc(s);
}

static inline void enable_adc(struct cm_state *s)
{
	if (!(s->enable & ENADC)) {
		/* enable channel */
		s->enable |= ENADC;
		outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
	}
	maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~PAUSEADC, 0);
}

static inline void enable_dac_unlocked(struct cm_state *s)
{
	if (!(s->enable & ENDAC)) {
		/* enable channel */
		s->enable |= ENDAC;
		outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
	}
	maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~PAUSEDAC, 0);

	if (s->status & DO_DUAL_DAC)
		enable_adc(s);
}

static inline void stop_adc_unlocked(struct cm_state *s)
{
	if (s->enable & ENADC) {
		/* disable interrupt */
		maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~ENADCINT, 0);
		disable_adc(s);
	}
}

static inline void stop_adc(struct cm_state *s)
{
	unsigned long flags;

	spin_lock_irqsave(&s->lock, flags);
	stop_adc_unlocked(s);
	spin_unlock_irqrestore(&s->lock, flags);

}

static inline void stop_dac_unlocked(struct cm_state *s)
{
	if (s->enable & ENDAC) {
		/* disable interrupt */
		maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~ENDACINT, 0);
		disable_dac(s);
	}
	if (s->status & DO_DUAL_DAC)
		stop_dac1_unlocked(s);
}

static inline void stop_dac(struct cm_state *s)
{
	unsigned long flags;

	spin_lock_irqsave(&s->lock, flags);
	stop_dac_unlocked(s);
	spin_unlock_irqrestore(&s->lock, flags);
}

static inline void start_adc_unlocked(struct cm_state *s)
{
	if ((s->dma_adc.mapped || s->dma_adc.count < (signed)(s->dma_adc.dmasize - 2*s->dma_adc.fragsize))
	    && s->dma_adc.ready) {
		/* enable interrupt */
		maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~0, ENADCINT);
		enable_adc(s);
	}
}

static void start_adc(struct cm_state *s)
{
	unsigned long flags;

	spin_lock_irqsave(&s->lock, flags);
	start_adc_unlocked(s);
	spin_unlock_irqrestore(&s->lock, flags);
}

static void start_dac1_unlocked(struct cm_state *s)
{
	if ((s->dma_adc.mapped || s->dma_adc.count > 0) && s->dma_adc.ready) {
		/* enable interrupt */
		maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~0, ENADCINT);
 		enable_dac_unlocked(s);
	}
}

static void start_dac_unlocked(struct cm_state *s)
{
	if ((s->dma_dac.mapped || s->dma_dac.count > 0) && s->dma_dac.ready) {
		/* enable interrupt */
		maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~0, ENDACINT);
		enable_dac_unlocked(s);
	}
	if (s->status & DO_DUAL_DAC)
		start_dac1_unlocked(s);
}

static void start_dac(struct cm_state *s)
{
	unsigned long flags;

	spin_lock_irqsave(&s->lock, flags);
	start_dac_unlocked(s);
	spin_unlock_irqrestore(&s->lock, flags);
}

static int prog_dmabuf(struct cm_state *s, unsigned rec);

static int set_dac_channels(struct cm_state *s, int channels)
{
	unsigned long flags;
	static unsigned int fmmute = 0;

	spin_lock_irqsave(&s->lock, flags);

	if ((channels > 2) && (channels <= s->max_channels)
	 && (((s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK) == (CM_CFMT_STEREO | CM_CFMT_16BIT))) {
	    set_spdifout_unlocked(s, 0);
	    if (s->capability & CAN_MULTI_CH_HW) {
		// NXCHG
		maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~0, NXCHG);
		// CHB3D or CHB3D5C
	       	maskb(s->iobase + CODEC_CMI_CHFORMAT + 3, ~(CHB3D5C|CHB3D), channels > 4 ? CHB3D5C : CHB3D);
		// CHB3D6C
		maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~CHB3D6C, channels == 6 ? CHB3D6C : 0);
		// ENCENTER
		maskb(s->iobase + CODEC_CMI_MISC_CTRL, ~ENCENTER, channels == 6 ? ENCENTER : 0);
		s->status |= DO_MULTI_CH_HW;
	    } else if (s->capability & CAN_DUAL_DAC) {
		unsigned char fmtm = ~0, fmts = 0;
		ssize_t ret;

		// ENDBDAC, turn on double DAC mode
		// XCHGDAC, CH0 -> back, CH1->front
		maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, ENDBDAC|XCHGDAC);
		// mute FM
		fmmute = inb(s->iobase + CODEC_CMI_MIXER1) & FMMUTE;
		maskb(s->iobase + CODEC_CMI_MIXER1, ~0, FMMUTE);
		s->status |= DO_DUAL_DAC;
		// prepare secondary buffer
		spin_unlock_irqrestore(&s->lock, flags);
		ret = prog_dmabuf(s, 1);
		if (ret) return ret;
		spin_lock_irqsave(&s->lock, flags);

		// copy the hw state
		fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_DACSHIFT);
		fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_ADCSHIFT);
		// the HW only support 16-bit stereo
		fmts |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT;
		fmts |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT;
		fmts |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
		fmts |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;

		set_fmt_unlocked(s, fmtm, fmts);
		set_adc_rate_unlocked(s, s->ratedac);
	    }
	    // disable 4 speaker mode (analog duplicate)
	    set_hw_copy(s, 0);
	    s->curr_channels = channels;

	    // enable jack redirect
	    set_line_as_rear(s, use_line_as_rear);
	    if (channels > 4) {
		    set_line_as_bass(s, use_line_as_bass);
		    set_mic_as_bass(s, use_mic_as_bass);
	    }
	} else {
	    if (s->status & DO_MULTI_CH_HW) {
		maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~NXCHG, 0);
		maskb(s->iobase + CODEC_CMI_CHFORMAT + 3, ~(CHB3D5C|CHB3D), 0);
		maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~CHB3D6C, 0);
	    } else if (s->status & DO_DUAL_DAC) {
		maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~ENDBDAC, 0);
		maskb(s->iobase + CODEC_CMI_MIXER1, ~FMMUTE, fmmute);
	    }
	    // enable 4 speaker mode (analog duplicate)
	    set_hw_copy(s, hw_copy);
	    s->status &= ~DO_MULTI_CH;
	    s->curr_channels = s->fmt & (CM_CFMT_STEREO << CM_CFMT_DACSHIFT) ? 2 : 1;
	    // disable jack redirect
	    set_line_as_rear(s, hw_copy ? use_line_as_rear : 0);
	    set_line_as_bass(s, 0);
	    set_mic_as_bass(s, 0);
	}
	spin_unlock_irqrestore(&s->lock, flags);
	return s->curr_channels;
}

/* --------------------------------------------------------------------- */

#define DMABUF_DEFAULTORDER (16-PAGE_SHIFT)
#define DMABUF_MINORDER 1

static void dealloc_dmabuf(struct cm_state *s, struct dmabuf *db)
{
	struct page *pstart, *pend;

	if (db->rawbuf) {
		/* undo marking the pages as reserved */
		pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
		for (pstart = virt_to_page(db->rawbuf); pstart <= pend; pstart++)
			ClearPageReserved(pstart);
		pci_free_consistent(s->dev, PAGE_SIZE << db->buforder, db->rawbuf, db->dmaaddr);
	}
	db->rawbuf = NULL;
	db->mapped = db->ready = 0;
}

/* Ch1 is used for playback, Ch0 is used for recording */

static int prog_dmabuf(struct cm_state *s, unsigned rec)
{
	struct dmabuf *db = rec ? &s->dma_adc : &s->dma_dac;
	unsigned rate = rec ? s->rateadc : s->ratedac;
	int order;
	unsigned bytepersec;
	unsigned bufs;
	struct page *pstart, *pend;
	unsigned char fmt;
	unsigned long flags;

	fmt = s->fmt;
	if (rec) {
		stop_adc(s);
		fmt >>= CM_CFMT_ADCSHIFT;
	} else {
		stop_dac(s);
		fmt >>= CM_CFMT_DACSHIFT;
	}

	fmt &= CM_CFMT_MASK;
	db->hwptr = db->swptr = db->total_bytes = db->count = db->error = db->endcleared = 0;
	if (!db->rawbuf) {
		db->ready = db->mapped = 0;
		for (order = DMABUF_DEFAULTORDER; order >= DMABUF_MINORDER; order--)
			if ((db->rawbuf = pci_alloc_consistent(s->dev, PAGE_SIZE << order, &db->dmaaddr)))
				break;
		if (!db->rawbuf || !db->dmaaddr)
			return -ENOMEM;
		db->buforder = order;
		/* now mark the pages as reserved; otherwise remap_pfn_range doesn't do what we want */
		pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
		for (pstart = virt_to_page(db->rawbuf); pstart <= pend; pstart++)
			SetPageReserved(pstart);
	}
	bytepersec = rate << sample_shift[fmt];
	bufs = PAGE_SIZE << db->buforder;
	if (db->ossfragshift) {
		if ((1000 << db->ossfragshift) < bytepersec)
			db->fragshift = ld2(bytepersec/1000);
		else
			db->fragshift = db->ossfragshift;
	} else {
		db->fragshift = ld2(bytepersec/100/(db->subdivision ? db->subdivision : 1));
		if (db->fragshift < 3)
			db->fragshift = 3;
	}
	db->numfrag = bufs >> db->fragshift;
	while (db->numfrag < 4 && db->fragshift > 3) {
		db->fragshift--;
		db->numfrag = bufs >> db->fragshift;
	}
	db->fragsize = 1 << db->fragshift;
	if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag)
		db->numfrag = db->ossmaxfrags;
 	/* to make fragsize >= 4096 */
	db->fragsamples = db->fragsize >> sample_shift[fmt];
	db->dmasize = db->numfrag << db->fragshift;
	db->dmasamples = db->dmasize >> sample_shift[fmt];
	memset(db->rawbuf, (fmt & CM_CFMT_16BIT) ? 0 : 0x80, db->dmasize);
	spin_lock_irqsave(&s->lock, flags);
	if (rec) {
		if (s->status & DO_DUAL_DAC)
		    set_dmadac1(s, db->dmaaddr, db->dmasize >> sample_shift[fmt]);
		else
		    set_dmaadc(s, db->dmaaddr, db->dmasize >> sample_shift[fmt]);
		/* program sample counts */
		set_countdac(s, db->fragsamples);
	} else {
		set_dmadac(s, db->dmaaddr, db->dmasize >> sample_shift[fmt]);
		/* program sample counts */
		set_countdac(s, db->fragsamples);
	}
	spin_unlock_irqrestore(&s->lock, flags);
	db->enabled = 1;
	db->ready = 1;
	return 0;
}

static inline void clear_advance(struct cm_state *s)
{
	unsigned char c = (s->fmt & (CM_CFMT_16BIT << CM_CFMT_DACSHIFT)) ? 0 : 0x80;
	unsigned char *buf = s->dma_dac.rawbuf;
	unsigned char *buf1 = s->dma_adc.rawbuf;
	unsigned bsize = s->dma_dac.dmasize;
	unsigned bptr = s->dma_dac.swptr;
	unsigned len = s->dma_dac.fragsize;

	if (bptr + len > bsize) {
		unsigned x = bsize - bptr;
		memset(buf + bptr, c, x);
		if (s->status & DO_DUAL_DAC)
			memset(buf1 + bptr, c, x);
		bptr = 0;
		len -= x;
	}
	memset(buf + bptr, c, len);
	if (s->status & DO_DUAL_DAC)
		memset(buf1 + bptr, c, len);
}

/* call with spinlock held! */
static void cm_update_ptr(struct cm_state *s)
{
	unsigned hwptr;
	int diff;

	/* update ADC pointer */
	if (s->dma_adc.ready) {
	    if (s->status & DO_DUAL_DAC) {
		    /* the dac part will finish for this */
	    } else {
		hwptr = get_dmaadc(s) % s->dma_adc.dmasize;
		diff = (s->dma_adc.dmasize + hwptr - s->dma_adc.hwptr) % s->dma_adc.dmasize;
		s->dma_adc.hwptr = hwptr;
		s->dma_adc.total_bytes += diff;
		s->dma_adc.count += diff;
		if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
			wake_up(&s->dma_adc.wait);
		if (!s->dma_adc.mapped) {
			if (s->dma_adc.count > (signed)(s->dma_adc.dmasize - ((3 * s->dma_adc.fragsize) >> 1))) {
				pause_adc(s);
				s->dma_adc.error++;
			}
		}
	    }
	}
	/* update DAC pointer */
	if (s->dma_dac.ready) {
		hwptr = get_dmadac(s) % s->dma_dac.dmasize;
		diff = (s->dma_dac.dmasize + hwptr - s->dma_dac.hwptr) % s->dma_dac.dmasize;
		s->dma_dac.hwptr = hwptr;
		s->dma_dac.total_bytes += diff;
		if (s->status & DO_DUAL_DAC) {
			s->dma_adc.hwptr = hwptr;
			s->dma_adc.total_bytes += diff;
		}
		if (s->dma_dac.mapped) {
			s->dma_dac.count += diff;
			if (s->status & DO_DUAL_DAC)
				s->dma_adc.count += diff;
			if (s->dma_dac.count >= (signed)s->dma_dac.fragsize)
				wake_up(&s->dma_dac.wait);
		} else {
			s->dma_dac.count -= diff;
			if (s->status & DO_DUAL_DAC)
				s->dma_adc.count -= diff;
			if (s->dma_dac.count <= 0) {
				pause_dac(s);
				s->dma_dac.error++;
			} else if (s->dma_dac.count <= (signed)s->dma_dac.fragsize && !s->dma_dac.endcleared) {
				clear_advance(s);
				s->dma_dac.endcleared = 1;
				if (s->status & DO_DUAL_DAC)
					s->dma_adc.endcleared = 1;
			}
			if (s->dma_dac.count + (signed)s->dma_dac.fragsize <= (signed)s->dma_dac.dmasize)
				wake_up(&s->dma_dac.wait);
		}
	}
}

static irqreturn_t cm_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
        struct cm_state *s = (struct cm_state *)dev_id;
	unsigned int intsrc, intstat;
	unsigned char mask = 0;

	/* fastpath out, to ease interrupt sharing */
	intsrc = inl(s->iobase + CODEC_CMI_INT_STATUS);
	if (!(intsrc & 0x80000000))
		return IRQ_NONE;
	spin_lock(&s->lock);
	intstat = inb(s->iobase + CODEC_CMI_INT_HLDCLR + 2);
	/* acknowledge interrupt */
	if (intsrc & ADCINT)
		mask |= ENADCINT;
	if (intsrc & DACINT)
		mask |= ENDACINT;
	outb(intstat & ~mask, s->iobase + CODEC_CMI_INT_HLDCLR + 2);
	outb(intstat | mask, s->iobase + CODEC_CMI_INT_HLDCLR + 2);
	cm_update_ptr(s);
	spin_unlock(&s->lock);
#ifdef CONFIG_SOUND_CMPCI_MIDI
	if (intsrc & 0x00010000) {	// UART interrupt
		if (s->midi_devc && intchk_mpu401((void *)s->midi_devc))
			mpuintr(irq, (void *)s->midi_devc, regs);
		else
			inb(s->iomidi);// dummy read
	}
#endif
	return IRQ_HANDLED;
}

/* --------------------------------------------------------------------- */

static const char invalid_magic[] = KERN_CRIT "cmpci: invalid magic value\n";

#define VALIDATE_STATE(s)                         \
({                                                \
	if (!(s) || (s)->magic != CM_MAGIC) { \
		printk(invalid_magic);            \
		return -ENXIO;                    \
	}                                         \
})

/* --------------------------------------------------------------------- */

#define MT_4          1
#define MT_5MUTE      2
#define MT_4MUTEMONO  3
#define MT_6MUTE      4
#define MT_5MUTEMONO  5

static const struct {
	unsigned left;
	unsigned right;
	unsigned type;
	unsigned rec;
	unsigned play;
} mixtable[SOUND_MIXER_NRDEVICES] = {
	[SOUND_MIXER_CD]     = { DSP_MIX_CDVOLIDX_L,     DSP_MIX_CDVOLIDX_R,     MT_5MUTE,     0x04, 0x06 },
	[SOUND_MIXER_LINE]   = { DSP_MIX_LINEVOLIDX_L,   DSP_MIX_LINEVOLIDX_R,   MT_5MUTE,     0x10, 0x18 },
	[SOUND_MIXER_MIC]    = { DSP_MIX_MICVOLIDX,      DSP_MIX_MICVOLIDX,      MT_5MUTEMONO, 0x01, 0x01 },
	[SOUND_MIXER_SYNTH]  = { DSP_MIX_FMVOLIDX_L,  	 DSP_MIX_FMVOLIDX_R,     MT_5MUTE,     0x40, 0x00 },
	[SOUND_MIXER_VOLUME] = { DSP_MIX_MASTERVOLIDX_L, DSP_MIX_MASTERVOLIDX_R, MT_5MUTE,     0x00, 0x00 },
	[SOUND_MIXER_PCM]    = { DSP_MIX_VOICEVOLIDX_L,  DSP_MIX_VOICEVOLIDX_R,  MT_5MUTE,     0x00, 0x00 },
	[SOUND_MIXER_LINE1]  = { DSP_MIX_AUXVOL_L,       DSP_MIX_AUXVOL_R,       MT_5MUTE,     0x80, 0x60 },
	[SOUND_MIXER_SPEAKER]= { DSP_MIX_SPKRVOLIDX,	 DSP_MIX_SPKRVOLIDX,	 MT_5MUTEMONO, 0x00, 0x01 }
};

static const unsigned char volidx[SOUND_MIXER_NRDEVICES] =
{
	[SOUND_MIXER_CD]     = 1,
	[SOUND_MIXER_LINE]   = 2,
	[SOUND_MIXER_MIC]    = 3,
	[SOUND_MIXER_SYNTH]  = 4,
	[SOUND_MIXER_VOLUME] = 5,
	[SOUND_MIXER_PCM]    = 6,
	[SOUND_MIXER_LINE1]  = 7,
	[SOUND_MIXER_SPEAKER]= 8
};

static unsigned mixer_outmask(struct cm_state *s)
{
	unsigned long flags;
	int i, j, k;

	spin_lock_irqsave(&s->lock, flags);
	j = rdmixer(s, DSP_MIX_OUTMIXIDX);
	spin_unlock_irqrestore(&s->lock, flags);
	for (k = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
		if (j & mixtable[i].play)
			k |= 1 << i;
	return k;
}

static unsigned mixer_recmask(struct cm_state *s)
{
	unsigned long flags;
	int i, j, k;

	spin_lock_irqsave(&s->lock, flags);
	j = rdmixer(s, DSP_MIX_ADCMIXIDX_L);
	spin_unlock_irqrestore(&s->lock, flags);
	for (k = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
		if (j & mixtable[i].rec)
			k |= 1 << i;
	return k;
}

static int mixer_ioctl(struct cm_state *s, unsigned int cmd, unsigned long arg)
{
	unsigned long flags;
	int i, val, j;
	unsigned char l, r, rl, rr;
	void __user *argp = (void __user *)arg;
	int __user *p = argp;

	VALIDATE_STATE(s);
        if (cmd == SOUND_MIXER_INFO) {
		mixer_info info;
		memset(&info, 0, sizeof(info));
		strlcpy(info.id, "cmpci", sizeof(info.id));
		strlcpy(info.name, "C-Media PCI", sizeof(info.name));
		info.modify_counter = s->mix.modcnt;
		if (copy_to_user(argp, &info, sizeof(info)))
			return -EFAULT;
		return 0;
	}
	if (cmd == SOUND_OLD_MIXER_INFO) {
		_old_mixer_info info;
		memset(&info, 0, sizeof(info));
		strlcpy(info.id, "cmpci", sizeof(info.id));
		strlcpy(info.name, "C-Media cmpci", sizeof(info.name));
		if (copy_to_user(argp, &info, sizeof(info)))
			return -EFAULT;
		return 0;
	}
	if (cmd == OSS_GETVERSION)
		return put_user(SOUND_VERSION, p);
	if (_IOC_TYPE(cmd) != 'M' || _SIOC_SIZE(cmd) != sizeof(int))
                return -EINVAL;
        if (_SIOC_DIR(cmd) == _SIOC_READ) {
                switch (_IOC_NR(cmd)) {
                case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
			val = mixer_recmask(s);
			return put_user(val, p);

                case SOUND_MIXER_OUTSRC: /* Arg contains a bit for each recording source */
			val = mixer_outmask(s);
			return put_user(val, p);

                case SOUND_MIXER_DEVMASK: /* Arg contains a bit for each supported device */
			for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
				if (mixtable[i].type)
					val |= 1 << i;
			return put_user(val, p);

                case SOUND_MIXER_RECMASK: /* Arg contains a bit for each supported recording source */
			for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
				if (mixtable[i].rec)
					val |= 1 << i;
			return put_user(val, p);

                case SOUND_MIXER_OUTMASK: /* Arg contains a bit for each supported recording source */
			for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
				if (mixtable[i].play)
					val |= 1 << i;
			return put_user(val, p);

                 case SOUND_MIXER_STEREODEVS: /* Mixer channels supporting stereo */
			for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
				if (mixtable[i].type && mixtable[i].type != MT_4MUTEMONO)
					val |= 1 << i;
			return put_user(val, p);

                case SOUND_MIXER_CAPS:
			return put_user(0, p);

		default:
			i = _IOC_NR(cmd);
                        if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type)
                                return -EINVAL;
			if (!volidx[i])
				return -EINVAL;
			return put_user(s->mix.vol[volidx[i]-1], p);
		}
	}
        if (_SIOC_DIR(cmd) != (_SIOC_READ|_SIOC_WRITE))
		return -EINVAL;
	s->mix.modcnt++;
	switch (_IOC_NR(cmd)) {
	case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
		if (get_user(val, p))
			return -EFAULT;
		i = generic_hweight32(val);
		for (j = i = 0; i < SOUND_MIXER_NRDEVICES; i++) {
			if (!(val & (1 << i)))
				continue;
			if (!mixtable[i].rec) {
				val &= ~(1 << i);
				continue;
			}
			j |= mixtable[i].rec;
		}
		spin_lock_irqsave(&s->lock, flags);
		wrmixer(s, DSP_MIX_ADCMIXIDX_L, j);
		wrmixer(s, DSP_MIX_ADCMIXIDX_R, (j & 1) | (j>>1) | (j & 0x80));
		spin_unlock_irqrestore(&s->lock, flags);
		return 0;

	case SOUND_MIXER_OUTSRC: /* Arg contains a bit for each recording source */
		if (get_user(val, p))
			return -EFAULT;
		for (j = i = 0; i < SOUND_MIXER_NRDEVICES; i++) {
			if (!(val & (1 << i)))
				continue;
			if (!mixtable[i].play) {
				val &= ~(1 << i);
				continue;
			}
			j |= mixtable[i].play;
		}
		spin_lock_irqsave(&s->lock, flags);
		wrmixer(s, DSP_MIX_OUTMIXIDX, j);
		spin_unlock_irqrestore(&s->lock, flags);
		return 0;

	default:
		i = _IOC_NR(cmd);
		if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type)
			return -EINVAL;
		if (get_user(val, p))
			return -EFAULT;
		l = val & 0xff;
		r = (val >> 8) & 0xff;
		if (l > 100)
			l = 100;
		if (r > 100)
			r = 100;
		spin_lock_irqsave(&s->lock, flags);
		switch (mixtable[i].type) {
		case MT_4:
			if (l >= 10)
				l -= 10;
			if (r >= 10)
				r -= 10;
			frobindir(s, mixtable[i].left, 0xf0, l / 6);
			frobindir(s, mixtable[i].right, 0xf0, l / 6);
			break;

		case MT_4MUTEMONO:
			rl = (l < 4 ? 0 : (l - 5) / 3) & 31;
			rr = (rl >> 2) & 7;
			wrmixer(s, mixtable[i].left, rl<<3);
			if (i == SOUND_MIXER_MIC)
				maskb(s->iobase + CODEC_CMI_MIXER2, ~0x0e, rr<<1);
			break;

		case MT_5MUTEMONO:
			rl = l < 4 ? 0 : (l - 5) / 3;
 			wrmixer(s, mixtable[i].left, rl<<3);
			l = rdmixer(s, DSP_MIX_OUTMIXIDX) & ~mixtable[i].play;
			r = rl ? mixtable[i].play : 0;
			wrmixer(s, DSP_MIX_OUTMIXIDX, l | r);
			/* for recording */
			if (i == SOUND_MIXER_MIC) {
				if (s->chip_version >= 37) {
					rr = rl >> 1;
					maskb(s->iobase + CODEC_CMI_MIXER2, ~0x0e, (rr&0x07)<<1);
					frobindir(s, DSP_MIX_EXTENSION, ~0x01, rr>>3);
				} else {
					rr = rl >> 2;
					maskb(s->iobase + CODEC_CMI_MIXER2, ~0x0e, rr<<1);
				}
			}
			break;

		case MT_5MUTE:
			rl = l < 4 ? 0 : (l - 5) / 3;
			rr = r < 4 ? 0 : (r - 5) / 3;
 			wrmixer(s, mixtable[i].left, rl<<3);
			wrmixer(s, mixtable[i].right, rr<<3);
			l = rdmixer(s, DSP_MIX_OUTMIXIDX);
			l &= ~mixtable[i].play;
			r = (rl|rr) ? mixtable[i].play : 0;
			wrmixer(s, DSP_MIX_OUTMIXIDX, l | r);
			break;

		case MT_6MUTE:
			if (l < 6)
				rl = 0x00;
			else
				rl = l * 2 / 3;
			if (r < 6)
				rr = 0x00;
			else
				rr = r * 2 / 3;
			wrmixer(s, mixtable[i].left, rl);
			wrmixer(s, mixtable[i].right, rr);
			break;
		}
		spin_unlock_irqrestore(&s->lock, flags);

		if (!volidx[i])
			return -EINVAL;
		s->mix.vol[volidx[i]-1] = val;
		return put_user(s->mix.vol[volidx[i]-1], p);
	}
}

/* --------------------------------------------------------------------- */

static int cm_open_mixdev(struct inode *inode, struct file *file)
{
	int minor = iminor(inode);
	struct list_head *list;
	struct cm_state *s;

	for (list = devs.next; ; list = list->next) {
		if (list == &devs)
			return -ENODEV;
		s = list_entry(list, struct cm_state, devs);
		if (s->dev_mixer == minor)
			break;
	}
       	VALIDATE_STATE(s);
	file->private_data = s;
	return nonseekable_open(inode, file);
}

static int cm_release_mixdev(struct inode *inode, struct file *file)
{
	struct cm_state *s = (struct cm_state *)file->private_data;

	VALIDATE_STATE(s);
	return 0;
}

static int cm_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
	return mixer_ioctl((struct cm_state *)file->private_data, cmd, arg);
}

static /*const*/ struct file_operations cm_mixer_fops = {
	.owner	 = THIS_MODULE,
	.llseek	 = no_llseek,
	.ioctl	 = cm_ioctl_mixdev,
	.open	 = cm_open_mixdev,
	.release = cm_release_mixdev,
};


/* --------------------------------------------------------------------- */

static int drain_dac(struct cm_state *s, int nonblock)
{
	DECLARE_WAITQUEUE(wait, current);
	unsigned long flags;
	int count, tmo;

	if (s->dma_dac.mapped || !s->dma_dac.ready)
		return 0;
        add_wait_queue(&s->dma_dac.wait, &wait);
        for (;;) {
        	__set_current_state(TASK_INTERRUPTIBLE);
                spin_lock_irqsave(&s->lock, flags);
		count = s->dma_dac.count;
                spin_unlock_irqrestore(&s->lock, flags);
		if (count <= 0)
			break;
		if (signal_pending(current))
                        break;
                if (nonblock) {
                        remove_wait_queue(&s->dma_dac.wait, &wait);
                        set_current_state(TASK_RUNNING);
                        return -EBUSY;
                }
		tmo = 3 * HZ * (count + s->dma_dac.fragsize) / 2 / s->ratedac;
		tmo >>= sample_shift[(s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK];
		if (!schedule_timeout(tmo + 1))
			DBG(printk(KERN_DEBUG "cmpci: dma timed out??\n");)
        }
        remove_wait_queue(&s->dma_dac.wait, &wait);
        set_current_state(TASK_RUNNING);
        if (signal_pending(current))
                return -ERESTARTSYS;
        return 0;
}

/* --------------------------------------------------------------------- */

static ssize_t cm_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
	struct cm_state *s = (struct cm_state *)file->private_data;
	DECLARE_WAITQUEUE(wait, current);
	ssize_t ret;
	unsigned long flags;
	unsigned swptr;
	int cnt;

	VALIDATE_STATE(s);
	if (s->dma_adc.mapped)
		return -ENXIO;
	if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
		return ret;
	if (!access_ok(VERIFY_WRITE, buffer, count))
		return -EFAULT;
	ret = 0;

        add_wait_queue(&s->dma_adc.wait, &wait);
	while (count > 0) {
		spin_lock_irqsave(&s->lock, flags);
		swptr = s->dma_adc.swptr;
		cnt = s->dma_adc.dmasize-swptr;
		if (s->dma_adc.count < cnt)
			cnt = s->dma_adc.count;
		if (cnt <= 0)
			__set_current_state(TASK_INTERRUPTIBLE);
		spin_unlock_irqrestore(&s->lock, flags);
		if (cnt > count)
			cnt = count;
		if (cnt <= 0) {
			if (s->dma_adc.enabled)
				start_adc(s);
			if (file->f_flags & O_NONBLOCK) {
				if (!ret)
					ret = -EAGAIN;
				goto out;
			}
			if (!schedule_timeout(HZ)) {
				printk(KERN_DEBUG "cmpci: read: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n",
				       s->dma_adc.dmasize, s->dma_adc.fragsize, s->dma_adc.count,
				       s->dma_adc.hwptr, s->dma_adc.swptr);
				spin_lock_irqsave(&s->lock, flags);
				stop_adc_unlocked(s);
				set_dmaadc(s, s->dma_adc.dmaaddr, s->dma_adc.dmasamples);
				/* program sample counts */
				set_countadc(s, s->dma_adc.fragsamples);
				s->dma_adc.count = s->dma_adc.hwptr = s->dma_adc.swptr = 0;
				spin_unlock_irqrestore(&s->lock, flags);
			}
			if (signal_pending(current)) {
				if (!ret)
					ret = -ERESTARTSYS;
				goto out;
			}
			continue;
		}
		if (s->status & DO_BIGENDIAN_R) {
			int	i, err;
			unsigned char *src;
			char __user *dst = buffer;
			unsigned char data[2];

			src = (unsigned char *) (s->dma_adc.rawbuf + swptr);
			// copy left/right sample at one time
			for (i = 0; i < cnt / 2; i++) {
				data[0] = src[1];
				data[1] = src[0];
				if ((err = __put_user(data[0], dst++))) {
					ret = err;
					goto out;
				}
				if ((err = __put_user(data[1], dst++))) {
					ret = err;
					goto out;
				}
				src += 2;
			}
		} else if (copy_to_user(buffer, s->dma_adc.rawbuf + swptr, cnt)) {
			if (!ret)
				ret = -EFAULT;
			goto out;
		}
		swptr = (swptr + cnt) % s->dma_adc.dmasize;
		spin_lock_irqsave(&s->lock, flags);
		s->dma_adc.swptr = swptr;
		s->dma_adc.count -= cnt;
		count -= cnt;
		buffer += cnt;
		ret += cnt;
		if (s->dma_adc.enabled)
			start_adc_unlocked(s);
		spin_unlock_irqrestore(&s->lock, flags);
	}
out:
        remove_wait_queue(&s->dma_adc.wait, &wait);
	set_current_state(TASK_RUNNING);
	return ret;
}

static ssize_t cm_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
{
	struct cm_state *s = (struct cm_state *)file->private_data;
	DECLARE_WAITQUEUE(wait, current);
	ssize_t ret;
	unsigned long flags;
	unsigned swptr;
	int cnt;

	VALIDATE_STATE(s);
	if (s->dma_dac.mapped)
		return -ENXIO;
	if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0)))
		return ret;
	if (!access_ok(VERIFY_READ, buffer, count))
		return -EFAULT;
	if (s->status & DO_DUAL_DAC) {
		if (s->dma_adc.mapped)
			return -ENXIO;
		if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
			return ret;
	}
	if (!access_ok(VERIFY_READ, buffer, count))
		return -EFAULT;
	ret = 0;

        add_wait_queue(&s->dma_dac.wait, &wait);
	while (count > 0) {
		spin_lock_irqsave(&s->lock, flags);
		if (s->dma_dac.count < 0) {
			s->dma_dac.count = 0;
			s->dma_dac.swptr = s->dma_dac.hwptr;
		}
		if (s->status & DO_DUAL_DAC) {
			s->dma_adc.swptr = s->dma_dac.swptr;
			s->dma_adc.count = s->dma_dac.count;
			s->dma_adc.endcleared = s->dma_dac.endcleared;
		}
		swptr = s->dma_dac.swptr;
		cnt = s->dma_dac.dmasize-swptr;
		if (s->status & DO_AC3_SW) {
			if (s->dma_dac.count + 2 * cnt > s->dma_dac.dmasize)
				cnt = (s->dma_dac.dmasize - s->dma_dac.count) / 2;
		} else {
			if (s->dma_dac.count + cnt > s->dma_dac.dmasize)
				cnt = s->dma_dac.dmasize - s->dma_dac.count;
		}
		if (cnt <= 0)
			__set_current_state(TASK_INTERRUPTIBLE);
		spin_unlock_irqrestore(&s->lock, flags);
		if (cnt > count)
			cnt = count;
		if ((s->status & DO_DUAL_DAC) && (cnt > count / 2))
		    cnt = count / 2;
		if (cnt <= 0) {
			if (s->dma_dac.enabled)
				start_dac(s);
			if (file->f_flags & O_NONBLOCK) {
				if (!ret)
					ret = -EAGAIN;
				goto out;
			}
			if (!schedule_timeout(HZ)) {
				printk(KERN_DEBUG "cmpci: write: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n",
				       s->dma_dac.dmasize, s->dma_dac.fragsize, s->dma_dac.count,
				       s->dma_dac.hwptr, s->dma_dac.swptr);
				spin_lock_irqsave(&s->lock, flags);
				stop_dac_unlocked(s);
				set_dmadac(s, s->dma_dac.dmaaddr, s->dma_dac.dmasamples);
				/* program sample counts */
				set_countdac(s, s->dma_dac.fragsamples);
				s->dma_dac.count = s->dma_dac.hwptr = s->dma_dac.swptr = 0;
				if (s->status & DO_DUAL_DAC)  {
					set_dmadac1(s, s->dma_adc.dmaaddr, s->dma_adc.dmasamples);
					s->dma_adc.count = s->dma_adc.hwptr = s->dma_adc.swptr = 0;
				}
				spin_unlock_irqrestore(&s->lock, flags);
			}
			if (signal_pending(current)) {
				if (!ret)
					ret = -ERESTARTSYS;
				goto out;
			}
			continue;
		}
		if (s->status & DO_AC3_SW) {
			int err;

			// clip exceeded data, caught by 033 and 037
			if (swptr + 2 * cnt > s->dma_dac.dmasize)
				cnt = (s->dma_dac.dmasize - swptr) / 2;
			if ((err = trans_ac3(s, s->dma_dac.rawbuf + swptr, buffer, cnt))) {
				ret = err;
				goto out;
			}
			swptr = (swptr + 2 * cnt) % s->dma_dac.dmasize;
		} else if ((s->status & DO_DUAL_DAC) && (s->status & DO_BIGENDIAN_W)) {
			int	i, err;
			const char __user *src = buffer;
			unsigned char *dst0, *dst1;
			unsigned char data[8];

			dst0 = (unsigned char *) (s->dma_dac.rawbuf + swptr);
			dst1 = (unsigned char *) (s->dma_adc.rawbuf + swptr);
			// copy left/right sample at one time
			for (i = 0; i < cnt / 4; i++) {
				if ((err = __get_user(data[0], src++))) {
					ret = err;
					goto out;
				}
				if ((err = __get_user(data[1], src++))) {
					ret = err;
					goto out;
				}
				if ((err = __get_user(data[2], src++))) {
					ret = err;
					goto out;
				}
				if ((err = __get_user(data[3], src++))) {
					ret = err;
					goto out;
				}
				if ((err = __get_user(data[4], src++))) {
					ret = err;
					goto out;
				}
				if ((err = __get_user(data[5], src++))) {
					ret = err;
					goto out;
				}
				if ((err = __get_user(data[6], src++))) {
					ret = err;
					goto out;
				}
				if ((err = __get_user(data[7], src++))) {
					ret = err;
					goto out;
				}
				dst0[0] = data[1];
				dst0[1] = data[0];
				dst0[2] = data[3];
				dst0[3] = data[2];
				dst1[0] = data[5];
				dst1[1] = data[4];
				dst1[2] = data[7];
				dst1[3] = data[6];
				dst0 += 4;
				dst1 += 4;
			}
			swptr = (swptr + cnt) % s->dma_dac.dmasize;
		} else if (s->status & DO_DUAL_DAC) {
			int	i, err;
			unsigned long __user *src = (unsigned long __user *) buffer;
			unsigned long *dst0, *dst1;

			dst0 = (unsigned long *) (s->dma_dac.rawbuf + swptr);
			dst1 = (unsigned long *) (s->dma_adc.rawbuf + swptr);
			// copy left/right sample at one time
			for (i = 0; i < cnt / 4; i++) {
				if ((err = __get_user(*dst0++, src++))) {
					ret = err;
					goto out;
				}
				if ((err = __get_user(*dst1++, src++))) {
					ret = err;
					goto out;
				}
			}
			swptr = (swptr + cnt) % s->dma_dac.dmasize;
		} else if (s->status & DO_BIGENDIAN_W) {
			int	i, err;
			const char __user *src = buffer;
			unsigned char *dst;
			unsigned char data[2];

			dst = (unsigned char *) (s->dma_dac.rawbuf + swptr);
			// swap hi/lo bytes for each sample
			for (i = 0; i < cnt / 2; i++) {
				if ((err = __get_user(data[0], src++))) {
					ret = err;
					goto out;
				}
				if ((err = __get_user(data[1], src++))) {
					ret = err;
					goto out;
				}
				dst[0] = data[1];
				dst[1] = data[0];
				dst += 2;
			}
			swptr = (swptr + cnt) % s->dma_dac.dmasize;
		} else {
			if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt)) {
				if (!ret)
					ret = -EFAULT;
				goto out;
			}
			swptr = (swptr + cnt) % s->dma_dac.dmasize;
		}
		spin_lock_irqsave(&s->lock, flags);
		s->dma_dac.swptr = swptr;
		s->dma_dac.count += cnt;
		if (s->status & DO_AC3_SW)
			s->dma_dac.count += cnt;
		s->dma_dac.endcleared = 0;
		spin_unlock_irqrestore(&s->lock, flags);
		count -= cnt;
		buffer += cnt;
		ret += cnt;
		if (s->status & DO_DUAL_DAC) {
			count -= cnt;
			buffer += cnt;
			ret += cnt;
		}
		if (s->dma_dac.enabled)
			start_dac(s);
	}
out:
        remove_wait_queue(&s->dma_dac.wait, &wait);
	set_current_state(TASK_RUNNING);
	return ret;
}

static unsigned int cm_poll(struct file *file, struct poll_table_struct *wait)
{
	struct cm_state *s = (struct cm_state *)file->private_data;
	unsigned long flags;
	unsigned int mask = 0;

	VALIDATE_STATE(s);
	if (file->f_mode & FMODE_WRITE) {
		if (!s->dma_dac.ready && prog_dmabuf(s, 0))
			return 0;
		poll_wait(file, &s->dma_dac.wait, wait);
	}
	if (file->f_mode & FMODE_READ) {
		if (!s->dma_adc.ready && prog_dmabuf(s, 1))
			return 0;
		poll_wait(file, &s->dma_adc.wait, wait);
	}
	spin_lock_irqsave(&s->lock, flags);
	cm_update_ptr(s);
	if (file->f_mode & FMODE_READ) {
		if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
			mask |= POLLIN | POLLRDNORM;
	}
	if (file->f_mode & FMODE_WRITE) {
		if (s->dma_dac.mapped) {
			if (s->dma_dac.count >= (signed)s->dma_dac.fragsize)
				mask |= POLLOUT | POLLWRNORM;
		} else {
			if ((signed)s->dma_dac.dmasize >= s->dma_dac.count + (signed)s->dma_dac.fragsize)
				mask |= POLLOUT | POLLWRNORM;
		}
	}
	spin_unlock_irqrestore(&s->lock, flags);
	return mask;
}

static int cm_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct cm_state *s = (struct cm_state *)file->private_data;
	struct dmabuf *db;
	int ret = -EINVAL;
	unsigned long size;

	VALIDATE_STATE(s);
	lock_kernel();
	if (vma->vm_flags & VM_WRITE) {
		if ((ret = prog_dmabuf(s, 0)) != 0)
			goto out;
		db = &s->dma_dac;
	} else if (vma->vm_flags & VM_READ) {
		if ((ret = prog_dmabuf(s, 1)) != 0)
			goto out;
		db = &s->dma_adc;
	} else
		goto out;
	ret = -EINVAL;
	if (vma->vm_pgoff != 0)
		goto out;
	size = vma->vm_end - vma->vm_start;
	if (size > (PAGE_SIZE << db->buforder))
		goto out;
	ret = -EINVAL;
	if (remap_pfn_range(vma, vma->vm_start,
				virt_to_phys(db->rawbuf) >> PAGE_SHIFT,
				size, vma->vm_page_prot))
		goto out;
	db->mapped = 1;
	ret = 0;
out:
	unlock_kernel();
	return ret;
}

#define SNDCTL_SPDIF_COPYRIGHT	_SIOW('S',  0, int)       // set/reset S/PDIF copy protection
#define SNDCTL_SPDIF_LOOP	_SIOW('S',  1, int)       // set/reset S/PDIF loop
#define SNDCTL_SPDIF_MONITOR	_SIOW('S',  2, int)       // set S/PDIF monitor
#define SNDCTL_SPDIF_LEVEL	_SIOW('S',  3, int)       // set/reset S/PDIF out level
#define SNDCTL_SPDIF_INV	_SIOW('S',  4, int)       // set/reset S/PDIF in inverse
#define SNDCTL_SPDIF_SEL2	_SIOW('S',  5, int)       // set S/PDIF in #2
#define SNDCTL_SPDIF_VALID	_SIOW('S',  6, int)       // set S/PDIF valid
#define SNDCTL_SPDIFOUT		_SIOW('S',  7, int)       // set S/PDIF out
#define SNDCTL_SPDIFIN		_SIOW('S',  8, int)       // set S/PDIF out

static int cm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
	struct cm_state *s = (struct cm_state *)file->private_data;
	unsigned long flags;
        audio_buf_info abinfo;
        count_info cinfo;
	int val, mapped, ret;
	unsigned char fmtm, fmtd;
	void __user *argp = (void __user *)arg;
	int __user *p = argp;

	VALIDATE_STATE(s);
        mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) ||
		((file->f_mode & FMODE_READ) && s->dma_adc.mapped);
	switch (cmd) {
	case OSS_GETVERSION:
		return put_user(SOUND_VERSION, p);

	case SNDCTL_DSP_SYNC:
		if (file->f_mode & FMODE_WRITE)
			return drain_dac(s, 0/*file->f_flags & O_NONBLOCK*/);
		return 0;

	case SNDCTL_DSP_SETDUPLEX:
		return 0;

	case SNDCTL_DSP_GETCAPS:
		return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP | DSP_CAP_BIND, p);

        case SNDCTL_DSP_RESET:
		if (file->f_mode & FMODE_WRITE) {
			stop_dac(s);
			synchronize_irq(s->irq);
			s->dma_dac.swptr = s->dma_dac.hwptr = s->dma_dac.count = s->dma_dac.total_bytes = 0;
			if (s->status & DO_DUAL_DAC)
				s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0;
		}
		if (file->f_mode & FMODE_READ) {
			stop_adc(s);
			synchronize_irq(s->irq);
			s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0;
		}
		return 0;

        case SNDCTL_DSP_SPEED:
		if (get_user(val, p))
			return -EFAULT;
		if (val >= 0) {
			if (file->f_mode & FMODE_READ) {
			 	spin_lock_irqsave(&s->lock, flags);
				stop_adc_unlocked(s);
				s->dma_adc.ready = 0;
				set_adc_rate_unlocked(s, val);
				spin_unlock_irqrestore(&s->lock, flags);
			}
			if (file->f_mode & FMODE_WRITE) {
				stop_dac(s);
				s->dma_dac.ready = 0;
				if (s->status & DO_DUAL_DAC)
					s->dma_adc.ready = 0;
				set_dac_rate(s, val);
			}
		}
		return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p);

        case SNDCTL_DSP_STEREO:
		if (get_user(val, p))
			return -EFAULT;
		fmtd = 0;
		fmtm = ~0;
		if (file->f_mode & FMODE_READ) {
			stop_adc(s);
			s->dma_adc.ready = 0;
			if (val)
				fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
			else
				fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
		}
		if (file->f_mode & FMODE_WRITE) {
			stop_dac(s);
			s->dma_dac.ready = 0;
			if (val)
				fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
			else
				fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_DACSHIFT);
			if (s->status & DO_DUAL_DAC) {
				s->dma_adc.ready = 0;
				if (val)
					fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
				else
					fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
			}
		}
		set_fmt(s, fmtm, fmtd);
		return 0;

        case SNDCTL_DSP_CHANNELS:
		if (get_user(val, p))
			return -EFAULT;
		if (val != 0) {
			fmtd = 0;
			fmtm = ~0;
			if (file->f_mode & FMODE_READ) {
				stop_adc(s);
				s->dma_adc.ready = 0;
				if (val >= 2)
					fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
				else
					fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
			}
			if (file->f_mode & FMODE_WRITE) {
				stop_dac(s);
				s->dma_dac.ready = 0;
				if (val >= 2)
					fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
				else
					fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_DACSHIFT);
				if (s->status & DO_DUAL_DAC) {
					s->dma_adc.ready = 0;
					if (val >= 2)
						fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
					else
						fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
				}
			}
			set_fmt(s, fmtm, fmtd);
			if ((s->capability & CAN_MULTI_CH)
			     && (file->f_mode & FMODE_WRITE)) {
				val = set_dac_channels(s, val);
				return put_user(val, p);
			}
		}
		return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_STEREO << CM_CFMT_ADCSHIFT)
					   : (CM_CFMT_STEREO << CM_CFMT_DACSHIFT))) ? 2 : 1, p);

	case SNDCTL_DSP_GETFMTS: /* Returns a mask */
                return put_user(AFMT_S16_BE|AFMT_S16_LE|AFMT_U8|
			((s->capability & CAN_AC3) ? AFMT_AC3 : 0), p);

	case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
		if (get_user(val, p))
			return -EFAULT;
		if (val != AFMT_QUERY) {
			fmtd = 0;
			fmtm = ~0;
			if (file->f_mode & FMODE_READ) {
				stop_adc(s);
				s->dma_adc.ready = 0;
				if (val == AFMT_S16_BE || val == AFMT_S16_LE)
					fmtd |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT;
				else
					fmtm &= ~(CM_CFMT_16BIT << CM_CFMT_ADCSHIFT);
				if (val == AFMT_S16_BE)
					s->status |= DO_BIGENDIAN_R;
				else
					s->status &= ~DO_BIGENDIAN_R;
			}
			if (file->f_mode & FMODE_WRITE) {
				stop_dac(s);
				s->dma_dac.ready = 0;
				if (val == AFMT_S16_BE || val == AFMT_S16_LE || val == AFMT_AC3)
					fmtd |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT;
				else
					fmtm &= ~(CM_CFMT_16BIT << CM_CFMT_DACSHIFT);
				if (val == AFMT_AC3) {
					fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
					set_ac3(s, 48000);
				} else
					set_ac3(s, 0);
				if (s->status & DO_DUAL_DAC) {
					s->dma_adc.ready = 0;
					if (val == AFMT_S16_BE || val == AFMT_S16_LE)
						fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
					else
						fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
				}
				if (val == AFMT_S16_BE)
					s->status |= DO_BIGENDIAN_W;
				else
					s->status &= ~DO_BIGENDIAN_W;
			}
			set_fmt(s, fmtm, fmtd);
		}
		if (s->status & DO_AC3) return put_user(AFMT_AC3, p);
		return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_16BIT << CM_CFMT_ADCSHIFT)
					   : (CM_CFMT_16BIT << CM_CFMT_DACSHIFT))) ? val : AFMT_U8, p);

	case SNDCTL_DSP_POST:
                return 0;

        case SNDCTL_DSP_GETTRIGGER:
		val = 0;
		if (s->status & DO_DUAL_DAC) {
			if (file->f_mode & FMODE_WRITE &&
			 (s->enable & ENDAC) &&
			 (s->enable & ENADC))
				val |= PCM_ENABLE_OUTPUT;
			return put_user(val, p);
		}
		if (file->f_mode & FMODE_READ && s->enable & ENADC)
			val |= PCM_ENABLE_INPUT;
		if (file->f_mode & FMODE_WRITE && s->enable & ENDAC)
			val |= PCM_ENABLE_OUTPUT;
		return put_user(val, p);

	case SNDCTL_DSP_SETTRIGGER:
		if (get_user(val, p))
			return -EFAULT;
		if (file->f_mode & FMODE_READ) {
			if (val & PCM_ENABLE_INPUT) {
				if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
					return ret;
				s->dma_adc.enabled = 1;
				start_adc(s);
			} else {
				s->dma_adc.enabled = 0;
				stop_adc(s);
			}
		}
		if (file->f_mode & FMODE_WRITE) {
			if (val & PCM_ENABLE_OUTPUT) {
				if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0)))
					return ret;
				if (s->status & DO_DUAL_DAC) {
					if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
						return ret;
				}
				s->dma_dac.enabled = 1;
				start_dac(s);
			} else {
				s->dma_dac.enabled = 0;
				stop_dac(s);
			}
		}
		return 0;

	case SNDCTL_DSP_GETOSPACE:
		if (!(file->f_mode & FMODE_WRITE))
			return -EINVAL;
		if (!(s->enable & ENDAC) && (val = prog_dmabuf(s, 0)) != 0)
			return val;
		spin_lock_irqsave(&s->lock, flags);
		cm_update_ptr(s);
		abinfo.fragsize = s->dma_dac.fragsize;
                abinfo.bytes = s->dma_dac.dmasize - s->dma_dac.count;
                abinfo.fragstotal = s->dma_dac.numfrag;
                abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift;
		spin_unlock_irqrestore(&s->lock, flags);
		return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;

	case SNDCTL_DSP_GETISPACE:
		if (!(file->f_mode & FMODE_READ))
			return -EINVAL;
		if (!(s->enable & ENADC) && (val = prog_dmabuf(s, 1)) != 0)
			return val;
		spin_lock_irqsave(&s->lock, flags);
		cm_update_ptr(s);
		abinfo.fragsize = s->dma_adc.fragsize;
                abinfo.bytes = s->dma_adc.count;
                abinfo.fragstotal = s->dma_adc.numfrag;
                abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift;
		spin_unlock_irqrestore(&s->lock, flags);
		return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;

        case SNDCTL_DSP_NONBLOCK:
                file->f_flags |= O_NONBLOCK;
                return 0;

        case SNDCTL_DSP_GETODELAY:
		if (!(file->f_mode & FMODE_WRITE))
			return -EINVAL;
		spin_lock_irqsave(&s->lock, flags);
		cm_update_ptr(s);
                val = s->dma_dac.count;
		spin_unlock_irqrestore(&s->lock, flags);
		return put_user(val, p);

        case SNDCTL_DSP_GETIPTR:
		if (!(file->f_mode & FMODE_READ))
			return -EINVAL;
		spin_lock_irqsave(&s->lock, flags);
		cm_update_ptr(s);
                cinfo.bytes = s->dma_adc.total_bytes;
                cinfo.blocks = s->dma_adc.count >> s->dma_adc.fragshift;
                cinfo.ptr = s->dma_adc.hwptr;
		if (s->dma_adc.mapped)
			s->dma_adc.count &= s->dma_adc.fragsize-1;
		spin_unlock_irqrestore(&s->lock, flags);
                return copy_to_user(argp, &cinfo, sizeof(cinfo))  ? -EFAULT : 0;

        case SNDCTL_DSP_GETOPTR:
		if (!(file->f_mode & FMODE_WRITE))
			return -EINVAL;
		spin_lock_irqsave(&s->lock, flags);
		cm_update_ptr(s);
                cinfo.bytes = s->dma_dac.total_bytes;
                cinfo.blocks = s->dma_dac.count >> s->dma_dac.fragshift;
                cinfo.ptr = s->dma_dac.hwptr;
		if (s->dma_dac.mapped)
			s->dma_dac.count &= s->dma_dac.fragsize-1;
		if (s->status & DO_DUAL_DAC) {
			if (s->dma_adc.mapped)
				s->dma_adc.count &= s->dma_adc.fragsize-1;
		}
		spin_unlock_irqrestore(&s->lock, flags);
                return copy_to_user(argp, &cinfo, sizeof(cinfo)) ? -EFAULT : 0;

        case SNDCTL_DSP_GETBLKSIZE:
		if (file->f_mode & FMODE_WRITE) {
			if ((val = prog_dmabuf(s, 0)))
				return val;
			if (s->status & DO_DUAL_DAC) {
				if ((val = prog_dmabuf(s, 1)))
					return val;
				return put_user(2 * s->dma_dac.fragsize, p);
			}
			return put_user(s->dma_dac.fragsize, p);
		}
		if ((val = prog_dmabuf(s, 1)))
			return val;
		return put_user(s->dma_adc.fragsize, p);

        case SNDCTL_DSP_SETFRAGMENT:
		if (get_user(val, p))
			return -EFAULT;
		if (file->f_mode & FMODE_READ) {
			s->dma_adc.ossfragshift = val & 0xffff;
			s->dma_adc.ossmaxfrags = (val >> 16) & 0xffff;
			if (s->dma_adc.ossfragshift < 4)
				s->dma_adc.ossfragshift = 4;
			if (s->dma_adc.ossfragshift > 15)
				s->dma_adc.ossfragshift = 15;
			if (s->dma_adc.ossmaxfrags < 4)
				s->dma_adc.ossmaxfrags = 4;
		}
		if (file->f_mode & FMODE_WRITE) {
			s->dma_dac.ossfragshift = val & 0xffff;
			s->dma_dac.ossmaxfrags = (val >> 16) & 0xffff;
			if (s->dma_dac.ossfragshift < 4)
				s->dma_dac.ossfragshift = 4;
			if (s->dma_dac.ossfragshift > 15)
				s->dma_dac.ossfragshift = 15;
			if (s->dma_dac.ossmaxfrags < 4)
				s->dma_dac.ossmaxfrags = 4;
			if (s->status & DO_DUAL_DAC) {
				s->dma_adc.ossfragshift = s->dma_dac.ossfragshift;
				s->dma_adc.ossmaxfrags = s->dma_dac.ossmaxfrags;
			}
		}
		return 0;

        case SNDCTL_DSP_SUBDIVIDE:
		if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) ||
		    (file->f_mode & FMODE_WRITE && s->dma_dac.subdivision))
			return -EINVAL;
		if (get_user(val, p))
			return -EFAULT;
		if (val != 1 && val != 2 && val != 4)
			return -EINVAL;
		if (file->f_mode & FMODE_READ)
			s->dma_adc.subdivision = val;
		if (file->f_mode & FMODE_WRITE) {
			s->dma_dac.subdivision = val;
			if (s->status & DO_DUAL_DAC)
				s->dma_adc.subdivision = val;
		}
		return 0;

        case SOUND_PCM_READ_RATE:
		return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p);

        case SOUND_PCM_READ_CHANNELS:
		return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_STEREO << CM_CFMT_ADCSHIFT) : (CM_CFMT_STEREO << CM_CFMT_DACSHIFT))) ? 2 : 1, p);

        case SOUND_PCM_READ_BITS:
		return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_16BIT << CM_CFMT_ADCSHIFT) : (CM_CFMT_16BIT << CM_CFMT_DACSHIFT))) ? 16 : 8, p);

        case SOUND_PCM_READ_FILTER:
		return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p);

	case SNDCTL_DSP_GETCHANNELMASK:
		return put_user(DSP_BIND_FRONT|DSP_BIND_SURR|DSP_BIND_CENTER_LFE|DSP_BIND_SPDIF, p);

	case SNDCTL_DSP_BIND_CHANNEL:
		if (get_user(val, p))
			return -EFAULT;
		if (val == DSP_BIND_QUERY) {
			val = DSP_BIND_FRONT;
			if (s->status & DO_SPDIF_OUT)
				val |= DSP_BIND_SPDIF;
			else {
				if (s->curr_channels == 4)
					val |= DSP_BIND_SURR;
				if (s->curr_channels > 4)
					val |= DSP_BIND_CENTER_LFE;
			}
		} else {
			if (file->f_mode & FMODE_READ) {
				stop_adc(s);
				s->dma_adc.ready = 0;
				if (val & DSP_BIND_SPDIF) {
					set_spdifin(s, s->rateadc);
					if (!(s->status & DO_SPDIF_OUT))
						val &= ~DSP_BIND_SPDIF;
				}
			}
			if (file->f_mode & FMODE_WRITE) {
				stop_dac(s);
				s->dma_dac.ready = 0;
				if (val & DSP_BIND_SPDIF) {
					set_spdifout(s, s->ratedac);
					set_dac_channels(s, s->fmt & (CM_CFMT_STEREO << CM_CFMT_DACSHIFT) ? 2 : 1);
					if (!(s->status & DO_SPDIF_OUT))
						val &= ~DSP_BIND_SPDIF;
				} else {
					int channels;
					int mask;

					mask = val & (DSP_BIND_FRONT|DSP_BIND_SURR|DSP_BIND_CENTER_LFE);
					switch (mask) {
					    case DSP_BIND_FRONT:
						channels = 2;
						break;
					    case DSP_BIND_FRONT|DSP_BIND_SURR:
						channels = 4;
						break;
					    case DSP_BIND_FRONT|DSP_BIND_SURR|DSP_BIND_CENTER_LFE:
						channels = 6;
						break;
					    default:
						channels = s->fmt & (CM_CFMT_STEREO << CM_CFMT_DACSHIFT) ? 2 : 1;
						break;
					}
					set_dac_channels(s, channels);
				}
			}
		}
		return put_user(val, p);

	case SOUND_PCM_WRITE_FILTER:
	case SNDCTL_DSP_MAPINBUF:
	case SNDCTL_DSP_MAPOUTBUF:
        case SNDCTL_DSP_SETSYNCRO:
                return -EINVAL;
	case SNDCTL_SPDIF_COPYRIGHT:
		if (get_user(val, p))
			return -EFAULT;
		set_spdif_copyright(s, val);
                return 0;
	case SNDCTL_SPDIF_LOOP:
		if (get_user(val, p))
			return -EFAULT;
		set_spdif_loop(s, val);
                return 0;
	case SNDCTL_SPDIF_MONITOR:
		if (get_user(val, p))
			return -EFAULT;
		set_spdif_monitor(s, val);
                return 0;
	case SNDCTL_SPDIF_LEVEL:
		if (get_user(val, p))
			return -EFAULT;
		set_spdifout_level(s, val);
                return 0;
	case SNDCTL_SPDIF_INV:
		if (get_user(val, p))
			return -EFAULT;
		set_spdifin_inverse(s, val);
                return 0;
	case SNDCTL_SPDIF_SEL2:
		if (get_user(val, p))
			return -EFAULT;
		set_spdifin_channel2(s, val);
                return 0;
	case SNDCTL_SPDIF_VALID:
		if (get_user(val, p))
			return -EFAULT;
		set_spdifin_valid(s, val);
                return 0;
	case SNDCTL_SPDIFOUT:
		if (get_user(val, p))
			return -EFAULT;
		set_spdifout(s, val ? s->ratedac : 0);
                return 0;
	case SNDCTL_SPDIFIN:
		if (get_user(val, p))
			return -EFAULT;
		set_spdifin(s, val ? s->rateadc : 0);
                return 0;
	}
	return mixer_ioctl(s, cmd, arg);
}

static int cm_open(struct inode *inode, struct file *file)
{
	int minor = iminor(inode);
	DECLARE_WAITQUEUE(wait, current);
	unsigned char fmtm = ~0, fmts = 0;
	struct list_head *list;
	struct cm_state *s;

	for (list = devs.next; ; list = list->next) {
		if (list == &devs)
			return -ENODEV;
		s = list_entry(list, struct cm_state, devs);
		if (!((s->dev_audio ^ minor) & ~0xf))
			break;
	}
       	VALIDATE_STATE(s);
	file->private_data = s;
	/* wait for device to become free */
	down(&s->open_sem);
	while (s->open_mode & file->f_mode) {
		if (file->f_flags & O_NONBLOCK) {
			up(&s->open_sem);
			return -EBUSY;
		}
		add_wait_queue(&s->open_wait, &wait);
		__set_current_state(TASK_INTERRUPTIBLE);
		up(&s->open_sem);
		schedule();
		remove_wait_queue(&s->open_wait, &wait);
		set_current_state(TASK_RUNNING);
		if (signal_pending(current))
			return -ERESTARTSYS;
		down(&s->open_sem);
	}
	if (file->f_mode & FMODE_READ) {
		s->status &= ~DO_BIGENDIAN_R;
		fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_ADCSHIFT);
		if ((minor & 0xf) == SND_DEV_DSP16)
			fmts |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT;
		s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags = s->dma_adc.subdivision = 0;
		s->dma_adc.enabled = 1;
		set_adc_rate(s, 8000);
		// spdif-in is turnned off by default
		set_spdifin(s, 0);
	}
	if (file->f_mode & FMODE_WRITE) {
		s->status &= ~DO_BIGENDIAN_W;
		fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_DACSHIFT);
		if ((minor & 0xf) == SND_DEV_DSP16)
			fmts |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT;
		s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags = s->dma_dac.subdivision = 0;
		s->dma_dac.enabled = 1;
		set_dac_rate(s, 8000);
		// clear previous multichannel, spdif, ac3 state
		set_spdifout(s, 0);
		set_ac3(s, 0);
		set_dac_channels(s, 1);
	}
	set_fmt(s, fmtm, fmts);
	s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
	up(&s->open_sem);
	return nonseekable_open(inode, file);
}

static int cm_release(struct inode *inode, struct file *file)
{
	struct cm_state *s = (struct cm_state *)file->private_data;

	VALIDATE_STATE(s);
	lock_kernel();
	if (file->f_mode & FMODE_WRITE)
		drain_dac(s, file->f_flags & O_NONBLOCK);
	down(&s->open_sem);
	if (file->f_mode & FMODE_WRITE) {
		stop_dac(s);

		dealloc_dmabuf(s, &s->dma_dac);
		if (s->status & DO_DUAL_DAC)
			dealloc_dmabuf(s, &s->dma_adc);

		if (s->status & DO_MULTI_CH)
			set_dac_channels(s, 1);
		if (s->status & DO_AC3)
			set_ac3(s, 0);
		if (s->status & DO_SPDIF_OUT)
			set_spdifout(s, 0);
		/* enable SPDIF loop */
		set_spdif_loop(s, spdif_loop);
		s->status &= ~DO_BIGENDIAN_W;
	}
	if (file->f_mode & FMODE_READ) {
		stop_adc(s);
		dealloc_dmabuf(s, &s->dma_adc);
		s->status &= ~DO_BIGENDIAN_R;
	}
	s->open_mode &= ~(file->f_mode & (FMODE_READ|FMODE_WRITE));
	up(&s->open_sem);
	wake_up(&s->open_wait);
	unlock_kernel();
	return 0;
}

static /*const*/ struct file_operations cm_audio_fops = {
	.owner	 = THIS_MODULE,
	.llseek	 = no_llseek,
	.read	 = cm_read,
	.write	 = cm_write,
	.poll	 = cm_poll,
	.ioctl	 = cm_ioctl,
	.mmap	 = cm_mmap,
	.open	 = cm_open,
	.release = cm_release,
};

/* --------------------------------------------------------------------- */

static struct initvol {
	int mixch;
	int vol;
} initvol[] __devinitdata = {
	{ SOUND_MIXER_WRITE_CD, 0x4f4f },
	{ SOUND_MIXER_WRITE_LINE, 0x4f4f },
	{ SOUND_MIXER_WRITE_MIC, 0x4f4f },
	{ SOUND_MIXER_WRITE_SYNTH, 0x4f4f },
	{ SOUND_MIXER_WRITE_VOLUME, 0x4f4f },
	{ SOUND_MIXER_WRITE_PCM, 0x4f4f }
};

/* check chip version and capability */
static int query_chip(struct cm_state *s)
{
	int ChipVersion = -1;
	unsigned char RegValue;

	// check reg 0Ch, bit 24-31
	RegValue = inb(s->iobase + CODEC_CMI_INT_HLDCLR + 3);
	if (RegValue == 0) {
	    // check reg 08h, bit 24-28
	    RegValue = inb(s->iobase + CODEC_CMI_CHFORMAT + 3);
	    RegValue &= 0x1f;
	    if (RegValue == 0) {
		ChipVersion = 33;
		s->max_channels = 4;
		s->capability |= CAN_AC3_SW;
		s->capability |= CAN_DUAL_DAC;
	    } else {
		ChipVersion = 37;
		s->max_channels = 4;
		s->capability |= CAN_AC3_HW;
		s->capability |= CAN_DUAL_DAC;
	    }
	} else {
	    // check reg 0Ch, bit 26
	    if (RegValue & (1 << (26-24))) {
		ChipVersion = 39;
	    	if (RegValue & (1 << (24-24)))
		    s->max_channels = 6;
	    	else
		    s->max_channels = 4;
		s->capability |= CAN_AC3_HW;
		s->capability |= CAN_DUAL_DAC;
		s->capability |= CAN_MULTI_CH_HW;
		s->capability |= CAN_LINE_AS_BASS;
		s->capability |= CAN_MIC_AS_BASS;
	    } else {
		ChipVersion = 55; // 4 or 6 channels
		s->max_channels = 6;
		s->capability |= CAN_AC3_HW;
		s->capability |= CAN_DUAL_DAC;
		s->capability |= CAN_MULTI_CH_HW;
		s->capability |= CAN_LINE_AS_BASS;
		s->capability |= CAN_MIC_AS_BASS;
	    }
	}
	s->capability |= CAN_LINE_AS_REAR;
	return ChipVersion;
}

#ifdef CONFIG_SOUND_CMPCI_JOYSTICK
static int __devinit cm_create_gameport(struct cm_state *s, int io_port)
{
	struct gameport *gp;

	if (!request_region(io_port, CM_EXTENT_GAME, "cmpci GAME")) {
		printk(KERN_ERR "cmpci: gameport io ports 0x%#x in use\n", io_port);
		return -EBUSY;
	}

	if (!(s->gameport = gp = gameport_allocate_port())) {
		printk(KERN_ERR "cmpci: can not allocate memory for gameport\n");
		release_region(io_port, CM_EXTENT_GAME);
		return -ENOMEM;
	}

	gameport_set_name(gp, "C-Media GP");
	gameport_set_phys(gp, "pci%s/gameport0", pci_name(s->dev));
	gp->dev.parent = &s->dev->dev;
	gp->io = io_port;

	/* enable joystick */
	maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, 0x02);

	gameport_register_port(gp);

	return 0;
}

static void __devexit cm_free_gameport(struct cm_state *s)
{
	if (s->gameport) {
		int gpio = s->gameport->io;

		gameport_unregister_port(s->gameport);
		s->gameport = NULL;
		maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x02, 0);
		release_region(gpio, CM_EXTENT_GAME);
	}
}
#else
static inline int cm_create_gameport(struct cm_state *s, int io_port) { return -ENOSYS; }
static inline void cm_free_gameport(struct cm_state *s) { }
#endif

#define	echo_option(x)\
if (x) strcat(options, "" #x " ")

static int __devinit cm_probe(struct pci_dev *pcidev, const struct pci_device_id *pciid)
{
	struct cm_state *s;
	mm_segment_t fs;
	int i, val, ret;
	unsigned char reg_mask;
	int timeout;
	struct resource *ports;
	struct {
		unsigned short	deviceid;
		char		*devicename;
	} devicetable[] = {
		{ PCI_DEVICE_ID_CMEDIA_CM8338A, "CM8338A" },
		{ PCI_DEVICE_ID_CMEDIA_CM8338B, "CM8338B" },
		{ PCI_DEVICE_ID_CMEDIA_CM8738,  "CM8738" },
		{ PCI_DEVICE_ID_CMEDIA_CM8738B, "CM8738B" },
	};
	char	*devicename = "unknown";
	char	options[256];

	if ((ret = pci_enable_device(pcidev)))
		return ret;
	if (!(pci_resource_flags(pcidev, 0) & IORESOURCE_IO))
		return -ENODEV;
	if (pcidev->irq == 0)
		return -ENODEV;
	i = pci_set_dma_mask(pcidev, DMA_32BIT_MASK);
	if (i) {
		printk(KERN_WARNING "cmpci: architecture does not support 32bit PCI busmaster DMA\n");
		return i;
	}
	s = kmalloc(sizeof(*s), GFP_KERNEL);
	if (!s) {
		printk(KERN_WARNING "cmpci: out of memory\n");
		return -ENOMEM;
	}
	/* search device name */
	for (i = 0; i < sizeof(devicetable) / sizeof(devicetable[0]); i++) {
		if (devicetable[i].deviceid == pcidev->device) {
			devicename = devicetable[i].devicename;
			break;
		}
	}
	memset(s, 0, sizeof(struct cm_state));
	init_waitqueue_head(&s->dma_adc.wait);
	init_waitqueue_head(&s->dma_dac.wait);
	init_waitqueue_head(&s->open_wait);
	init_MUTEX(&s->open_sem);
	spin_lock_init(&s->lock);
	s->magic = CM_MAGIC;
	s->dev = pcidev;
	s->iobase = pci_resource_start(pcidev, 0);
	s->iosynth = fmio;
	s->iomidi = mpuio;
#ifdef CONFIG_SOUND_CMPCI_MIDI
	s->midi_devc = 0;
#endif
	s->status = 0;
	if (s->iobase == 0)
		return -ENODEV;
	s->irq = pcidev->irq;

	if (!request_region(s->iobase, CM_EXTENT_CODEC, "cmpci")) {
		printk(KERN_ERR "cmpci: io ports %#x-%#x in use\n", s->iobase, s->iobase+CM_EXTENT_CODEC-1);
		ret = -EBUSY;
		goto err_region5;
	}
	/* dump parameters */
	strcpy(options, "cmpci: ");
	echo_option(joystick);
	echo_option(spdif_inverse);
	echo_option(spdif_loop);
	echo_option(spdif_out);
	echo_option(use_line_as_rear);
	echo_option(use_line_as_bass);
	echo_option(use_mic_as_bass);
	echo_option(mic_boost);
	echo_option(hw_copy);
	printk(KERN_INFO "%s\n", options);

	/* initialize codec registers */
	outb(0, s->iobase + CODEC_CMI_INT_HLDCLR + 2);  /* disable ints */
	outb(0, s->iobase + CODEC_CMI_FUNCTRL0 + 2); /* disable channels */
	/* reset mixer */
	wrmixer(s, DSP_MIX_DATARESETIDX, 0);

	/* request irq */
	if ((ret = request_irq(s->irq, cm_interrupt, SA_SHIRQ, "cmpci", s))) {
		printk(KERN_ERR "cmpci: irq %u in use\n", s->irq);
		goto err_irq;
	}
	printk(KERN_INFO "cmpci: found %s adapter at io %#x irq %u\n",
	       devicename, s->iobase, s->irq);
	/* register devices */
	if ((s->dev_audio = register_sound_dsp(&cm_audio_fops, -1)) < 0) {
		ret = s->dev_audio;
		goto err_dev1;
	}
	if ((s->dev_mixer = register_sound_mixer(&cm_mixer_fops, -1)) < 0) {
		ret = s->dev_mixer;
		goto err_dev2;
	}
	pci_set_master(pcidev);	/* enable bus mastering */
	/* initialize the chips */
	fs = get_fs();
	set_fs(KERNEL_DS);
	/* set mixer output */
	frobindir(s, DSP_MIX_OUTMIXIDX, 0x1f, 0x1f);
	/* set mixer input */
	val = SOUND_MASK_LINE|SOUND_MASK_SYNTH|SOUND_MASK_CD|SOUND_MASK_MIC;
	mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long)&val);
	for (i = 0; i < sizeof(initvol)/sizeof(initvol[0]); i++) {
		val = initvol[i].vol;
		mixer_ioctl(s, initvol[i].mixch, (unsigned long)&val);
	}
	set_fs(fs);
	/* use channel 1 for playback, channel 0 for record */
	maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~CHADC1, CHADC0);
	/* turn off VMIC3 - mic boost */
	if (mic_boost)
		maskb(s->iobase + CODEC_CMI_MIXER2, ~1, 0);
	else
		maskb(s->iobase + CODEC_CMI_MIXER2, ~0, 1);
	s->deviceid = pcidev->device;

	if (pcidev->device == PCI_DEVICE_ID_CMEDIA_CM8738
	 || pcidev->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {

		/* chip version and hw capability check */
		s->chip_version = query_chip(s);
		printk(KERN_INFO "cmpci: chip version = 0%d\n", s->chip_version);

		/* set SPDIF-in inverse before enable SPDIF loop */
		set_spdifin_inverse(s, spdif_inverse);

		/* use SPDIF in #1 */
		set_spdifin_channel2(s, 0);
	} else {
		s->chip_version = 0;
		/* 8338 will fall here */
		s->max_channels = 4;
		s->capability |= CAN_DUAL_DAC;
		s->capability |= CAN_LINE_AS_REAR;
	}
	/* enable SPDIF loop */
	set_spdif_loop(s, spdif_loop);

	// enable 4 speaker mode (analog duplicate)
	set_hw_copy(s, hw_copy);

	reg_mask = 0;
#ifdef CONFIG_SOUND_CMPCI_FM
	/* disable FM */
	maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~8, 0);
	if (s->iosynth) {
	    /* don't enable OPL3 if there is one */
	    if (opl3_detect(s->iosynth, NULL)) {
	    	s->iosynth = 0;
	    } else {
		/* set IO based at 0x388 */
		switch (s->iosynth) {
		    case 0x388:
			reg_mask = 0;
			break;
		    case 0x3C8:
			reg_mask = 0x01;
			break;
		    case 0x3E0:
			reg_mask = 0x02;
			break;
		    case 0x3E8:
			reg_mask = 0x03;
			break;
		    default:
			s->iosynth = 0;
			break;
		}
		maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~0x03, reg_mask);
		/* enable FM */
		if (s->iosynth) {
			maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, 8);
			if (opl3_detect(s->iosynth, NULL))
				ret = opl3_init(s->iosynth, NULL, THIS_MODULE);
			else {
				maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~8, 0);
				s->iosynth = 0;
			}
		}
	    }
	}
#endif
#ifdef CONFIG_SOUND_CMPCI_MIDI
	switch (s->iomidi) {
	    case 0x330:
		reg_mask = 0;
		break;
	    case 0x320:
		reg_mask = 0x20;
		break;
	    case 0x310:
		reg_mask = 0x40;
		break;
	    case 0x300:
		reg_mask = 0x60;
		break;
	    default:
		s->iomidi = 0;
		goto skip_mpu;
	}
	ports = request_region(s->iomidi, 2, "mpu401");
	if (!ports)
		goto skip_mpu;
	/* disable MPU-401 */
	maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x04, 0);
	s->mpu_data.name = "cmpci mpu";
	s->mpu_data.io_base = s->iomidi;
	s->mpu_data.irq = -s->irq;	// tell mpu401 to share irq
	if (probe_mpu401(&s->mpu_data, ports)) {
		release_region(s->iomidi, 2);
		s->iomidi = 0;
		goto skip_mpu;
	}
	maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~0x60, reg_mask);
	/* enable MPU-401 */
	maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, 0x04);
	/* clear all previously received interrupt */
	for (timeout = 900000; timeout > 0; timeout--) {
		if ((inb(s->iomidi + 1) && 0x80) == 0)
			inb(s->iomidi);
		else
			break;
	}
	if (!probe_mpu401(&s->mpu_data, ports)) {
		release_region(s->iomidi, 2);
		s->iomidi = 0;
		maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, 0x04);
	} else {
		attach_mpu401(&s->mpu_data, THIS_MODULE);
		s->midi_devc = s->mpu_data.slots[1];
	}
skip_mpu:
#endif
	/* disable joystick port */
	maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x02, 0);
	if (joystick)
		cm_create_gameport(s, 0x200);

	/* store it in the driver field */
	pci_set_drvdata(pcidev, s);
	/* put it into driver list */
	list_add_tail(&s->devs, &devs);
	/* increment devindex */
	if (devindex < NR_DEVICE-1)
		devindex++;
	return 0;

err_dev2:
	unregister_sound_dsp(s->dev_audio);
err_dev1:
	printk(KERN_ERR "cmpci: cannot register misc device\n");
	free_irq(s->irq, s);
err_irq:
	release_region(s->iobase, CM_EXTENT_CODEC);
err_region5:
	kfree(s);
	return ret;
}

/* --------------------------------------------------------------------- */

MODULE_AUTHOR("ChenLi Tien, cltien@cmedia.com.tw");
MODULE_DESCRIPTION("CM8x38 Audio Driver");
MODULE_LICENSE("GPL");

static void __devexit cm_remove(struct pci_dev *dev)
{
	struct cm_state *s = pci_get_drvdata(dev);

	if (!s)
		return;

	cm_free_gameport(s);

#ifdef CONFIG_SOUND_CMPCI_FM
	if (s->iosynth) {
		/* disable FM */
		maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~8, 0);
	}
#endif
#ifdef CONFIG_SOUND_CMPCI_MIDI
	if (s->iomidi) {
		unload_mpu401(&s->mpu_data);
		/* disable MPU-401 */
		maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x04, 0);
	}
#endif
	set_spdif_loop(s, 0);
	list_del(&s->devs);
	outb(0, s->iobase + CODEC_CMI_INT_HLDCLR + 2);  /* disable ints */
	synchronize_irq(s->irq);
	outb(0, s->iobase + CODEC_CMI_FUNCTRL0 + 2); /* disable channels */
	free_irq(s->irq, s);

	/* reset mixer */
	wrmixer(s, DSP_MIX_DATARESETIDX, 0);

	release_region(s->iobase, CM_EXTENT_CODEC);
	unregister_sound_dsp(s->dev_audio);
	unregister_sound_mixer(s->dev_mixer);
	kfree(s);
	pci_set_drvdata(dev, NULL);
}

static struct pci_device_id id_table[] __devinitdata = {
	{ PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
	{ PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
 	{ PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
	{ PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
	{ 0, }
};

MODULE_DEVICE_TABLE(pci, id_table);

static struct pci_driver cm_driver = {
       .name	 = "cmpci",
       .id_table = id_table,
       .probe	 = cm_probe,
       .remove	 = __devexit_p(cm_remove)
};

static int __init init_cmpci(void)
{
	printk(KERN_INFO "cmpci: version $Revision: 6.82 $ time " __TIME__ " " __DATE__ "\n");
	return pci_module_init(&cm_driver);
}

static void __exit cleanup_cmpci(void)
{
	printk(KERN_INFO "cmpci: unloading\n");
	pci_unregister_driver(&cm_driver);
}

module_init(init_cmpci);
module_exit(cleanup_cmpci);
back to top