Revision 0d4a2b733070a1bd52f981313f9e17f126701407 authored by Yi Wu on 04 August 2017, 20:09:56 UTC, committed by Facebook Github Bot on 04 August 2017, 20:12:07 UTC
Summary:
The FsyncFiles background job call Fsync() periodically for blob files. However it can access WritableFileWriter concurrently with a Put() or Write(). And WritableFileWriter does not support concurrent access. It will lead to WritableFileWriter buffer being flush with same content twice, and blob file end up corrupted. Fixing by simply let FsyncFiles hold write_mutex_.
Closes https://github.com/facebook/rocksdb/pull/2685

Differential Revision: D5561908

Pulled By: yiwu-arbug

fbshipit-source-id: f0bb5bcab0e05694e053b8c49eab43640721e872
1 parent 627c9f1
Raw File
autovector.h
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
#pragma once

#include <algorithm>
#include <cassert>
#include <initializer_list>
#include <iterator>
#include <stdexcept>
#include <vector>

namespace rocksdb {

#ifdef ROCKSDB_LITE
template <class T, size_t kSize = 8>
class autovector : public std::vector<T> {
  using std::vector<T>::vector;
};
#else
// A vector that leverages pre-allocated stack-based array to achieve better
// performance for array with small amount of items.
//
// The interface resembles that of vector, but with less features since we aim
// to solve the problem that we have in hand, rather than implementing a
// full-fledged generic container.
//
// Currently we don't support:
//  * reserve()/shrink_to_fit()
//     If used correctly, in most cases, people should not touch the
//     underlying vector at all.
//  * random insert()/erase(), please only use push_back()/pop_back().
//  * No move/swap operations. Each autovector instance has a
//     stack-allocated array and if we want support move/swap operations, we
//     need to copy the arrays other than just swapping the pointers. In this
//     case we'll just explicitly forbid these operations since they may
//     lead users to make false assumption by thinking they are inexpensive
//     operations.
//
// Naming style of public methods almost follows that of the STL's.
template <class T, size_t kSize = 8>
class autovector {
 public:
  // General STL-style container member types.
  typedef T value_type;
  typedef typename std::vector<T>::difference_type difference_type;
  typedef typename std::vector<T>::size_type size_type;
  typedef value_type& reference;
  typedef const value_type& const_reference;
  typedef value_type* pointer;
  typedef const value_type* const_pointer;

  // This class is the base for regular/const iterator
  template <class TAutoVector, class TValueType>
  class iterator_impl {
   public:
    // -- iterator traits
    typedef iterator_impl<TAutoVector, TValueType> self_type;
    typedef TValueType value_type;
    typedef TValueType& reference;
    typedef TValueType* pointer;
    typedef typename TAutoVector::difference_type difference_type;
    typedef std::random_access_iterator_tag iterator_category;

    iterator_impl(TAutoVector* vect, size_t index)
        : vect_(vect), index_(index) {};
    iterator_impl(const iterator_impl&) = default;
    ~iterator_impl() {}
    iterator_impl& operator=(const iterator_impl&) = default;

    // -- Advancement
    // ++iterator
    self_type& operator++() {
      ++index_;
      return *this;
    }

    // iterator++
    self_type operator++(int) {
      auto old = *this;
      ++index_;
      return old;
    }

    // --iterator
    self_type& operator--() {
      --index_;
      return *this;
    }

    // iterator--
    self_type operator--(int) {
      auto old = *this;
      --index_;
      return old;
    }

    self_type operator-(difference_type len) const {
      return self_type(vect_, index_ - len);
    }

    difference_type operator-(const self_type& other) const {
      assert(vect_ == other.vect_);
      return index_ - other.index_;
    }

    self_type operator+(difference_type len) const {
      return self_type(vect_, index_ + len);
    }

    self_type& operator+=(difference_type len) {
      index_ += len;
      return *this;
    }

    self_type& operator-=(difference_type len) {
      index_ -= len;
      return *this;
    }

    // -- Reference
    reference operator*() {
      assert(vect_->size() >= index_);
      return (*vect_)[index_];
    }

    const_reference operator*() const {
      assert(vect_->size() >= index_);
      return (*vect_)[index_];
    }

    pointer operator->() {
      assert(vect_->size() >= index_);
      return &(*vect_)[index_];
    }

    const_pointer operator->() const {
      assert(vect_->size() >= index_);
      return &(*vect_)[index_];
    }


    // -- Logical Operators
    bool operator==(const self_type& other) const {
      assert(vect_ == other.vect_);
      return index_ == other.index_;
    }

    bool operator!=(const self_type& other) const { return !(*this == other); }

    bool operator>(const self_type& other) const {
      assert(vect_ == other.vect_);
      return index_ > other.index_;
    }

    bool operator<(const self_type& other) const {
      assert(vect_ == other.vect_);
      return index_ < other.index_;
    }

    bool operator>=(const self_type& other) const {
      assert(vect_ == other.vect_);
      return index_ >= other.index_;
    }

    bool operator<=(const self_type& other) const {
      assert(vect_ == other.vect_);
      return index_ <= other.index_;
    }

   private:
    TAutoVector* vect_ = nullptr;
    size_t index_ = 0;
  };

  typedef iterator_impl<autovector, value_type> iterator;
  typedef iterator_impl<const autovector, const value_type> const_iterator;
  typedef std::reverse_iterator<iterator> reverse_iterator;
  typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

  autovector() = default;

  autovector(std::initializer_list<T> init_list) {
    for (const T& item : init_list) {
      push_back(item);
    }
  }

  ~autovector() = default;

  // -- Immutable operations
  // Indicate if all data resides in in-stack data structure.
  bool only_in_stack() const {
    // If no element was inserted at all, the vector's capacity will be `0`.
    return vect_.capacity() == 0;
  }

  size_type size() const { return num_stack_items_ + vect_.size(); }

  // resize does not guarantee anything about the contents of the newly
  // available elements
  void resize(size_type n) {
    if (n > kSize) {
      vect_.resize(n - kSize);
      num_stack_items_ = kSize;
    } else {
      vect_.clear();
      num_stack_items_ = n;
    }
  }

  bool empty() const { return size() == 0; }

  const_reference operator[](size_type n) const {
    assert(n < size());
    return n < kSize ? values_[n] : vect_[n - kSize];
  }

  reference operator[](size_type n) {
    assert(n < size());
    return n < kSize ? values_[n] : vect_[n - kSize];
  }

  const_reference at(size_type n) const {
    assert(n < size());
    return (*this)[n];
  }

  reference at(size_type n) {
    assert(n < size());
    return (*this)[n];
  }

  reference front() {
    assert(!empty());
    return *begin();
  }

  const_reference front() const {
    assert(!empty());
    return *begin();
  }

  reference back() {
    assert(!empty());
    return *(end() - 1);
  }

  const_reference back() const {
    assert(!empty());
    return *(end() - 1);
  }

  // -- Mutable Operations
  void push_back(T&& item) {
    if (num_stack_items_ < kSize) {
      values_[num_stack_items_++] = std::move(item);
    } else {
      vect_.push_back(item);
    }
  }

  void push_back(const T& item) {
    if (num_stack_items_ < kSize) {
      values_[num_stack_items_++] = item;
    } else {
      vect_.push_back(item);
    }
  }

  template <class... Args>
  void emplace_back(Args&&... args) {
    push_back(value_type(args...));
  }

  void pop_back() {
    assert(!empty());
    if (!vect_.empty()) {
      vect_.pop_back();
    } else {
      --num_stack_items_;
    }
  }

  void clear() {
    num_stack_items_ = 0;
    vect_.clear();
  }

  // -- Copy and Assignment
  autovector& assign(const autovector& other);

  autovector(const autovector& other) { assign(other); }

  autovector& operator=(const autovector& other) { return assign(other); }

  // -- Iterator Operations
  iterator begin() { return iterator(this, 0); }

  const_iterator begin() const { return const_iterator(this, 0); }

  iterator end() { return iterator(this, this->size()); }

  const_iterator end() const { return const_iterator(this, this->size()); }

  reverse_iterator rbegin() { return reverse_iterator(end()); }

  const_reverse_iterator rbegin() const {
    return const_reverse_iterator(end());
  }

  reverse_iterator rend() { return reverse_iterator(begin()); }

  const_reverse_iterator rend() const {
    return const_reverse_iterator(begin());
  }

 private:
  size_type num_stack_items_ = 0;  // current number of items
  value_type values_[kSize];       // the first `kSize` items
  // used only if there are more than `kSize` items.
  std::vector<T> vect_;
};

template <class T, size_t kSize>
autovector<T, kSize>& autovector<T, kSize>::assign(const autovector& other) {
  // copy the internal vector
  vect_.assign(other.vect_.begin(), other.vect_.end());

  // copy array
  num_stack_items_ = other.num_stack_items_;
  std::copy(other.values_, other.values_ + num_stack_items_, values_);

  return *this;
}
#endif  // ROCKSDB_LITE
}  // namespace rocksdb
back to top