Revision 0d4a2b733070a1bd52f981313f9e17f126701407 authored by Yi Wu on 04 August 2017, 20:09:56 UTC, committed by Facebook Github Bot on 04 August 2017, 20:12:07 UTC
Summary:
The FsyncFiles background job call Fsync() periodically for blob files. However it can access WritableFileWriter concurrently with a Put() or Write(). And WritableFileWriter does not support concurrent access. It will lead to WritableFileWriter buffer being flush with same content twice, and blob file end up corrupted. Fixing by simply let FsyncFiles hold write_mutex_.
Closes https://github.com/facebook/rocksdb/pull/2685

Differential Revision: D5561908

Pulled By: yiwu-arbug

fbshipit-source-id: f0bb5bcab0e05694e053b8c49eab43640721e872
1 parent 627c9f1
Raw File
thread_local_test.cc
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).

#include <thread>
#include <atomic>
#include <string>

#include "rocksdb/env.h"
#include "port/port.h"
#include "util/autovector.h"
#include "util/sync_point.h"
#include "util/testharness.h"
#include "util/testutil.h"
#include "util/thread_local.h"

namespace rocksdb {

class ThreadLocalTest : public testing::Test {
 public:
  ThreadLocalTest() : env_(Env::Default()) {}

  Env* env_;
};

namespace {

struct Params {
  Params(port::Mutex* m, port::CondVar* c, int* u, int n,
         UnrefHandler handler = nullptr)
      : mu(m),
        cv(c),
        unref(u),
        total(n),
        started(0),
        completed(0),
        doWrite(false),
        tls1(handler),
        tls2(nullptr) {}

  port::Mutex* mu;
  port::CondVar* cv;
  int* unref;
  int total;
  int started;
  int completed;
  bool doWrite;
  ThreadLocalPtr tls1;
  ThreadLocalPtr* tls2;
};

class IDChecker : public ThreadLocalPtr {
public:
  static uint32_t PeekId() {
    return TEST_PeekId();
  }
};

}  // anonymous namespace

// Suppress false positive clang analyzer warnings.
#ifndef __clang_analyzer__
TEST_F(ThreadLocalTest, UniqueIdTest) {
  port::Mutex mu;
  port::CondVar cv(&mu);

  ASSERT_EQ(IDChecker::PeekId(), 0u);
  // New ThreadLocal instance bumps id by 1
  {
    // Id used 0
    Params p1(&mu, &cv, nullptr, 1u);
    ASSERT_EQ(IDChecker::PeekId(), 1u);
    // Id used 1
    Params p2(&mu, &cv, nullptr, 1u);
    ASSERT_EQ(IDChecker::PeekId(), 2u);
    // Id used 2
    Params p3(&mu, &cv, nullptr, 1u);
    ASSERT_EQ(IDChecker::PeekId(), 3u);
    // Id used 3
    Params p4(&mu, &cv, nullptr, 1u);
    ASSERT_EQ(IDChecker::PeekId(), 4u);
  }
  // id 3, 2, 1, 0 are in the free queue in order
  ASSERT_EQ(IDChecker::PeekId(), 0u);

  // pick up 0
  Params p1(&mu, &cv, nullptr, 1u);
  ASSERT_EQ(IDChecker::PeekId(), 1u);
  // pick up 1
  Params* p2 = new Params(&mu, &cv, nullptr, 1u);
  ASSERT_EQ(IDChecker::PeekId(), 2u);
  // pick up 2
  Params p3(&mu, &cv, nullptr, 1u);
  ASSERT_EQ(IDChecker::PeekId(), 3u);
  // return up 1
  delete p2;
  ASSERT_EQ(IDChecker::PeekId(), 1u);
  // Now we have 3, 1 in queue
  // pick up 1
  Params p4(&mu, &cv, nullptr, 1u);
  ASSERT_EQ(IDChecker::PeekId(), 3u);
  // pick up 3
  Params p5(&mu, &cv, nullptr, 1u);
  // next new id
  ASSERT_EQ(IDChecker::PeekId(), 4u);
  // After exit, id sequence in queue:
  // 3, 1, 2, 0
}
#endif  // __clang_analyzer__

TEST_F(ThreadLocalTest, SequentialReadWriteTest) {
  // global id list carries over 3, 1, 2, 0
  ASSERT_EQ(IDChecker::PeekId(), 0u);

  port::Mutex mu;
  port::CondVar cv(&mu);
  Params p(&mu, &cv, nullptr, 1);
  ThreadLocalPtr tls2;
  p.tls2 = &tls2;

  auto func = [](void* ptr) {
    auto& params = *static_cast<Params*>(ptr);

    ASSERT_TRUE(params.tls1.Get() == nullptr);
    params.tls1.Reset(reinterpret_cast<int*>(1));
    ASSERT_TRUE(params.tls1.Get() == reinterpret_cast<int*>(1));
    params.tls1.Reset(reinterpret_cast<int*>(2));
    ASSERT_TRUE(params.tls1.Get() == reinterpret_cast<int*>(2));

    ASSERT_TRUE(params.tls2->Get() == nullptr);
    params.tls2->Reset(reinterpret_cast<int*>(1));
    ASSERT_TRUE(params.tls2->Get() == reinterpret_cast<int*>(1));
    params.tls2->Reset(reinterpret_cast<int*>(2));
    ASSERT_TRUE(params.tls2->Get() == reinterpret_cast<int*>(2));

    params.mu->Lock();
    ++(params.completed);
    params.cv->SignalAll();
    params.mu->Unlock();
  };

  for (int iter = 0; iter < 1024; ++iter) {
    ASSERT_EQ(IDChecker::PeekId(), 1u);
    // Another new thread, read/write should not see value from previous thread
    env_->StartThread(func, static_cast<void*>(&p));
    mu.Lock();
    while (p.completed != iter + 1) {
      cv.Wait();
    }
    mu.Unlock();
    ASSERT_EQ(IDChecker::PeekId(), 1u);
  }
}

TEST_F(ThreadLocalTest, ConcurrentReadWriteTest) {
  // global id list carries over 3, 1, 2, 0
  ASSERT_EQ(IDChecker::PeekId(), 0u);

  ThreadLocalPtr tls2;
  port::Mutex mu1;
  port::CondVar cv1(&mu1);
  Params p1(&mu1, &cv1, nullptr, 16);
  p1.tls2 = &tls2;

  port::Mutex mu2;
  port::CondVar cv2(&mu2);
  Params p2(&mu2, &cv2, nullptr, 16);
  p2.doWrite = true;
  p2.tls2 = &tls2;

  auto func = [](void* ptr) {
    auto& p = *static_cast<Params*>(ptr);

    p.mu->Lock();
    // Size_T switches size along with the ptr size
    // we want to cast to.
    size_t own = ++(p.started);
    p.cv->SignalAll();
    while (p.started != p.total) {
      p.cv->Wait();
    }
    p.mu->Unlock();

    // Let write threads write a different value from the read threads
    if (p.doWrite) {
      own += 8192;
    }

    ASSERT_TRUE(p.tls1.Get() == nullptr);
    ASSERT_TRUE(p.tls2->Get() == nullptr);

    auto* env = Env::Default();
    auto start = env->NowMicros();

    p.tls1.Reset(reinterpret_cast<size_t*>(own));
    p.tls2->Reset(reinterpret_cast<size_t*>(own + 1));
    // Loop for 1 second
    while (env->NowMicros() - start < 1000 * 1000) {
      for (int iter = 0; iter < 100000; ++iter) {
        ASSERT_TRUE(p.tls1.Get() == reinterpret_cast<size_t*>(own));
        ASSERT_TRUE(p.tls2->Get() == reinterpret_cast<size_t*>(own + 1));
        if (p.doWrite) {
          p.tls1.Reset(reinterpret_cast<size_t*>(own));
          p.tls2->Reset(reinterpret_cast<size_t*>(own + 1));
        }
      }
    }

    p.mu->Lock();
    ++(p.completed);
    p.cv->SignalAll();
    p.mu->Unlock();
  };

  // Initiate 2 instnaces: one keeps writing and one keeps reading.
  // The read instance should not see data from the write instance.
  // Each thread local copy of the value are also different from each
  // other.
  for (int th = 0; th < p1.total; ++th) {
    env_->StartThread(func, static_cast<void*>(&p1));
  }
  for (int th = 0; th < p2.total; ++th) {
    env_->StartThread(func, static_cast<void*>(&p2));
  }

  mu1.Lock();
  while (p1.completed != p1.total) {
    cv1.Wait();
  }
  mu1.Unlock();

  mu2.Lock();
  while (p2.completed != p2.total) {
    cv2.Wait();
  }
  mu2.Unlock();

  ASSERT_EQ(IDChecker::PeekId(), 3u);
}

TEST_F(ThreadLocalTest, Unref) {
  ASSERT_EQ(IDChecker::PeekId(), 0u);

  auto unref = [](void* ptr) {
    auto& p = *static_cast<Params*>(ptr);
    p.mu->Lock();
    ++(*p.unref);
    p.mu->Unlock();
  };

  // Case 0: no unref triggered if ThreadLocalPtr is never accessed
  auto func0 = [](void* ptr) {
    auto& p = *static_cast<Params*>(ptr);

    p.mu->Lock();
    ++(p.started);
    p.cv->SignalAll();
    while (p.started != p.total) {
      p.cv->Wait();
    }
    p.mu->Unlock();
  };

  for (int th = 1; th <= 128; th += th) {
    port::Mutex mu;
    port::CondVar cv(&mu);
    int unref_count = 0;
    Params p(&mu, &cv, &unref_count, th, unref);

    for (int i = 0; i < p.total; ++i) {
      env_->StartThread(func0, static_cast<void*>(&p));
    }
    env_->WaitForJoin();
    ASSERT_EQ(unref_count, 0);
  }

  // Case 1: unref triggered by thread exit
  auto func1 = [](void* ptr) {
    auto& p = *static_cast<Params*>(ptr);

    p.mu->Lock();
    ++(p.started);
    p.cv->SignalAll();
    while (p.started != p.total) {
      p.cv->Wait();
    }
    p.mu->Unlock();

    ASSERT_TRUE(p.tls1.Get() == nullptr);
    ASSERT_TRUE(p.tls2->Get() == nullptr);

    p.tls1.Reset(ptr);
    p.tls2->Reset(ptr);

    p.tls1.Reset(ptr);
    p.tls2->Reset(ptr);
  };

  for (int th = 1; th <= 128; th += th) {
    port::Mutex mu;
    port::CondVar cv(&mu);
    int unref_count = 0;
    ThreadLocalPtr tls2(unref);
    Params p(&mu, &cv, &unref_count, th, unref);
    p.tls2 = &tls2;

    for (int i = 0; i < p.total; ++i) {
      env_->StartThread(func1, static_cast<void*>(&p));
    }

    env_->WaitForJoin();

    // N threads x 2 ThreadLocal instance cleanup on thread exit
    ASSERT_EQ(unref_count, 2 * p.total);
  }

  // Case 2: unref triggered by ThreadLocal instance destruction
  auto func2 = [](void* ptr) {
    auto& p = *static_cast<Params*>(ptr);

    p.mu->Lock();
    ++(p.started);
    p.cv->SignalAll();
    while (p.started != p.total) {
      p.cv->Wait();
    }
    p.mu->Unlock();

    ASSERT_TRUE(p.tls1.Get() == nullptr);
    ASSERT_TRUE(p.tls2->Get() == nullptr);

    p.tls1.Reset(ptr);
    p.tls2->Reset(ptr);

    p.tls1.Reset(ptr);
    p.tls2->Reset(ptr);

    p.mu->Lock();
    ++(p.completed);
    p.cv->SignalAll();

    // Waiting for instruction to exit thread
    while (p.completed != 0) {
      p.cv->Wait();
    }
    p.mu->Unlock();
  };

  for (int th = 1; th <= 128; th += th) {
    port::Mutex mu;
    port::CondVar cv(&mu);
    int unref_count = 0;
    Params p(&mu, &cv, &unref_count, th, unref);
    p.tls2 = new ThreadLocalPtr(unref);

    for (int i = 0; i < p.total; ++i) {
      env_->StartThread(func2, static_cast<void*>(&p));
    }

    // Wait for all threads to finish using Params
    mu.Lock();
    while (p.completed != p.total) {
      cv.Wait();
    }
    mu.Unlock();

    // Now destroy one ThreadLocal instance
    delete p.tls2;
    p.tls2 = nullptr;
    // instance destroy for N threads
    ASSERT_EQ(unref_count, p.total);

    // Signal to exit
    mu.Lock();
    p.completed = 0;
    cv.SignalAll();
    mu.Unlock();
    env_->WaitForJoin();
    // additional N threads exit unref for the left instance
    ASSERT_EQ(unref_count, 2 * p.total);
  }
}

TEST_F(ThreadLocalTest, Swap) {
  ThreadLocalPtr tls;
  tls.Reset(reinterpret_cast<void*>(1));
  ASSERT_EQ(reinterpret_cast<int64_t>(tls.Swap(nullptr)), 1);
  ASSERT_TRUE(tls.Swap(reinterpret_cast<void*>(2)) == nullptr);
  ASSERT_EQ(reinterpret_cast<int64_t>(tls.Get()), 2);
  ASSERT_EQ(reinterpret_cast<int64_t>(tls.Swap(reinterpret_cast<void*>(3))), 2);
}

TEST_F(ThreadLocalTest, Scrape) {
  auto unref = [](void* ptr) {
    auto& p = *static_cast<Params*>(ptr);
    p.mu->Lock();
    ++(*p.unref);
    p.mu->Unlock();
  };

  auto func = [](void* ptr) {
    auto& p = *static_cast<Params*>(ptr);

    ASSERT_TRUE(p.tls1.Get() == nullptr);
    ASSERT_TRUE(p.tls2->Get() == nullptr);

    p.tls1.Reset(ptr);
    p.tls2->Reset(ptr);

    p.tls1.Reset(ptr);
    p.tls2->Reset(ptr);

    p.mu->Lock();
    ++(p.completed);
    p.cv->SignalAll();

    // Waiting for instruction to exit thread
    while (p.completed != 0) {
      p.cv->Wait();
    }
    p.mu->Unlock();
  };

  for (int th = 1; th <= 128; th += th) {
    port::Mutex mu;
    port::CondVar cv(&mu);
    int unref_count = 0;
    Params p(&mu, &cv, &unref_count, th, unref);
    p.tls2 = new ThreadLocalPtr(unref);

    for (int i = 0; i < p.total; ++i) {
      env_->StartThread(func, static_cast<void*>(&p));
    }

    // Wait for all threads to finish using Params
    mu.Lock();
    while (p.completed != p.total) {
      cv.Wait();
    }
    mu.Unlock();

    ASSERT_EQ(unref_count, 0);

    // Scrape all thread local data. No unref at thread
    // exit or ThreadLocalPtr destruction
    autovector<void*> ptrs;
    p.tls1.Scrape(&ptrs, nullptr);
    p.tls2->Scrape(&ptrs, nullptr);
    delete p.tls2;
    // Signal to exit
    mu.Lock();
    p.completed = 0;
    cv.SignalAll();
    mu.Unlock();
    env_->WaitForJoin();

    ASSERT_EQ(unref_count, 0);
  }
}

TEST_F(ThreadLocalTest, Fold) {
  auto unref = [](void* ptr) {
    delete static_cast<std::atomic<int64_t>*>(ptr);
  };
  static const int kNumThreads = 16;
  static const int kItersPerThread = 10;
  port::Mutex mu;
  port::CondVar cv(&mu);
  Params params(&mu, &cv, nullptr, kNumThreads, unref);
  auto func = [](void* ptr) {
    auto& p = *static_cast<Params*>(ptr);
    ASSERT_TRUE(p.tls1.Get() == nullptr);
    p.tls1.Reset(new std::atomic<int64_t>(0));

    for (int i = 0; i < kItersPerThread; ++i) {
      static_cast<std::atomic<int64_t>*>(p.tls1.Get())->fetch_add(1);
    }

    p.mu->Lock();
    ++(p.completed);
    p.cv->SignalAll();

    // Waiting for instruction to exit thread
    while (p.completed != 0) {
      p.cv->Wait();
    }
    p.mu->Unlock();
  };

  for (int th = 0; th < params.total; ++th) {
    env_->StartThread(func, static_cast<void*>(&params));
  }

  // Wait for all threads to finish using Params
  mu.Lock();
  while (params.completed != params.total) {
    cv.Wait();
  }
  mu.Unlock();

  // Verify Fold() behavior
  int64_t sum = 0;
  params.tls1.Fold(
      [](void* ptr, void* res) {
        auto sum_ptr = static_cast<int64_t*>(res);
        *sum_ptr += static_cast<std::atomic<int64_t>*>(ptr)->load();
      },
      &sum);
  ASSERT_EQ(sum, kNumThreads * kItersPerThread);

  // Signal to exit
  mu.Lock();
  params.completed = 0;
  cv.SignalAll();
  mu.Unlock();
  env_->WaitForJoin();
}

TEST_F(ThreadLocalTest, CompareAndSwap) {
  ThreadLocalPtr tls;
  ASSERT_TRUE(tls.Swap(reinterpret_cast<void*>(1)) == nullptr);
  void* expected = reinterpret_cast<void*>(1);
  // Swap in 2
  ASSERT_TRUE(tls.CompareAndSwap(reinterpret_cast<void*>(2), expected));
  expected = reinterpret_cast<void*>(100);
  // Fail Swap, still 2
  ASSERT_TRUE(!tls.CompareAndSwap(reinterpret_cast<void*>(2), expected));
  ASSERT_EQ(expected, reinterpret_cast<void*>(2));
  // Swap in 3
  expected = reinterpret_cast<void*>(2);
  ASSERT_TRUE(tls.CompareAndSwap(reinterpret_cast<void*>(3), expected));
  ASSERT_EQ(tls.Get(), reinterpret_cast<void*>(3));
}

namespace {

void* AccessThreadLocal(void* arg) {
  TEST_SYNC_POINT("AccessThreadLocal:Start");
  ThreadLocalPtr tlp;
  tlp.Reset(new std::string("hello RocksDB"));
  TEST_SYNC_POINT("AccessThreadLocal:End");
  return nullptr;
}

}  // namespace

// The following test is disabled as it requires manual steps to run it
// correctly.
//
// Currently we have no way to acess SyncPoint w/o ASAN error when the
// child thread dies after the main thread dies.  So if you manually enable
// this test and only see an ASAN error on SyncPoint, it means you pass the
// test.
TEST_F(ThreadLocalTest, DISABLED_MainThreadDiesFirst) {
  rocksdb::SyncPoint::GetInstance()->LoadDependency(
      {{"AccessThreadLocal:Start", "MainThreadDiesFirst:End"},
       {"PosixEnv::~PosixEnv():End", "AccessThreadLocal:End"}});

  // Triggers the initialization of singletons.
  Env::Default();

#ifndef ROCKSDB_LITE
  try {
#endif  // ROCKSDB_LITE
    rocksdb::port::Thread th(&AccessThreadLocal, nullptr);
    th.detach();
    TEST_SYNC_POINT("MainThreadDiesFirst:End");
#ifndef ROCKSDB_LITE
  } catch (const std::system_error& ex) {
    std::cerr << "Start thread: " << ex.code() << std::endl;
    FAIL();
  }
#endif  // ROCKSDB_LITE
}

}  // namespace rocksdb

int main(int argc, char** argv) {
  ::testing::InitGoogleTest(&argc, argv);
  return RUN_ALL_TESTS();
}
back to top