https://github.com/fenderglass/Ragout
Revision 2a52465f9118b5e0b8114a1fd25b8d60bac1036e authored by fenderglass on 30 September 2014, 22:07:28 UTC, committed by fenderglass on 30 September 2014, 22:07:28 UTC
1 parent 4ed9f44
Raw File
Tip revision: 2a52465f9118b5e0b8114a1fd25b8d60bac1036e authored by fenderglass on 30 September 2014, 22:07:28 UTC
added two scripts, help improved
Tip revision: 2a52465
debug-report.py
#!/usr/bin/env python2.7

from __future__ import print_function
import sys, os
import argparse
from collections import namedtuple, defaultdict
from cStringIO import StringIO
from itertools import combinations


import networkx as nx
import pylab
from Bio import Phylo

from utils.nucmer_parser import *

Edge = namedtuple("Edge", ["start", "end"])
Adjacency = namedtuple("Adjacency", ["left", "right", "infinite"])

def verify_alignment(alignment, contigs):
    problematic_contigs = []
    by_name = defaultdict(list)
    for entry in alignment:
        by_name[entry.contig_id].append(entry)
    for name in contigs:
        if len(by_name[name]) > 1:
            hits = list(map(lambda e: (e.s_ref, e.len_qry), by_name[name]))
            print("WARNING: Duplicated contig", name, hits, file=sys.stderr)
            problematic_contigs.append(name)
        if not by_name[name]:
            print("WARNING: Contig", name, "is not aligned", file=sys.stderr)
            problematic_contigs.append(name)
    return problematic_contigs


def get_true_adjacencies(alignment, contig_permutations,
                         break_contigs, circular):
    by_chr = group_by_chr(alignment)
    adjacencies = []

    for chr_name, entries in by_chr.items():
        prev_block = None
        prev_contig = None

        entries.append(entries[0])
        for hit in entries:
            if prev_contig in break_contigs or hit.contig_id in break_contigs:
                continue

            sign = 1 if hit.e_qry > hit.s_qry else -1
            blocks = contig_permutations[hit.contig_id]

            if sign < 0:
                blocks = list(map(lambda x: -x, blocks))[::-1]
            if prev_block:
                adjacencies.append(Adjacency(-prev_block, blocks[0], False))
            prev_block = blocks[-1]
            prev_contig = hit.contig_id

        if entries and not circular:
            adjacencies[-1] = Adjacency(adjacencies[-1].left,
                                        adjacencies[-1].right, True)

    return adjacencies


def get_contig_permutations(filename):
    contigs = {}
    for line in open(filename, "r"):
        line = line.strip()
        if not line:
            continue

        if line.startswith(">"):
            name = line[1:]
        else:
            blocks = line.split(" ")[:-1]
            contigs[name] = list(map(int, blocks))
    return contigs


def output_edges(edges, out_file):
    fout = open(out_file, "w")
    fout.write("graph {\n")
    for (v1, v2, inf) in edges:
        label = "oo" if inf else ""
        fout.write("{0} -- {1} [label=\"{2}\"];\n".format(v1, v2, label))
    fout.write("}")


def g2c(genome_id):
    if genome_id not in g2c.table:
        g2c.table[genome_id] = g2c.colors[0]
        g2c.colors = g2c.colors[1:] + g2c.colors[:1] #rotate list
    return g2c.table[genome_id]
g2c.colors = ["green", "blue", "yellow", "cyan", "magenta", "olive"]
g2c.table = {}


def compose_breakpoint_graph(base_dot, predicted_dot, true_edges):
    base_graph = nx.read_dot(base_dot)
    predicted_edges = nx.read_dot(predicted_dot)
    out_graph = nx.MultiGraph()

    for v1, v2, data in base_graph.edges_iter(data=True):
        color = g2c(data["genome_id"])
        out_graph.add_edge(v1, v2, color=color)
    for v1, v2 in predicted_edges.edges_iter():
        out_graph.add_edge(v1, v2, color="red", style="dashed")
    for (v1, v2, infinite) in true_edges:
        label = "oo" if infinite else ""
        out_graph.add_edge(str(v1), str(v2), color="red",
                           style="bold", label=label)

    return out_graph


def output_graph(graph, output_dir, only_predicted):
    subgraphs = nx.connected_component_subgraphs(graph)
    for comp_id, subgr in enumerate(subgraphs):
        if len(subgr) == 2:
            continue

        if only_predicted:
            to_show = False
            for v1, v2, data in subgr.edges_iter(data=True):
                if data.get("style") == "dashed":
                    to_show = True
                    break
            if not to_show:
                continue

        comp_file = os.path.join(output_dir, "comp{0}-bg.png".format(comp_id))
        agraph = nx.to_agraph(subgr)
        agraph.layout(prog="dot")
        agraph.draw(comp_file)


def read_scaffold_file(file):
    scaffold = set()
    with open(file, "r") as input:
        for line in input:
            temp = line.strip('\n ')
            if temp[0] != '>':
                scaffold.add(temp)
    return scaffold

def my_has_path(graph, ordered_contigs, src, dst):
    visited = set()

    def dfs(vertex):
        visited.add(vertex)

        for _, u in graph.edges(vertex):
            if u == dst:
                return True
            elif u not in visited and str(u)[1:] not in ordered_contigs:
                if dfs(u):
                    return True
        return False

    return dfs(src)


def add_overlap_edges(graph, overlap_dot, contigs_file):
    contigs = get_contig_permutations(contigs_file)
    contig_begins = {}
    contig_ends = {}
    for name, blocks in contigs.items():
        contig_begins[blocks[0]] = "+" + name
        contig_begins[-blocks[-1]] = "-" + name
        contig_ends[-blocks[-1]] = "+" + name
        contig_ends[blocks[0]] = "-" + name

    overlap_graph = nx.read_dot(overlap_dot)

    subgraphs = nx.connected_component_subgraphs(graph)
    for subgr in subgraphs:
        for v1, v2 in combinations(subgr.nodes(), 2):
            v1, v2 = int(v1), int(v2)

            if v1 in contig_ends and v2 in contig_begins:
                src = contig_ends[v1]
                dst = contig_begins[v2]
            elif v2 in contig_ends and v1 in contig_begins:
                src = contig_ends[v2]
                dst = contig_begins[v1]
            else:
                continue

            if not (overlap_graph.has_node(src) and
                    overlap_graph.has_node(dst)):
                continue

            if not nx.has_path(overlap_graph, src, dst):
                continue

            if my_has_path(overlap_graph, contigs, src, dst):
                graph.add_edge(str(v1), str(v2), weight=0.1)

            """
            paths = list(nx.all_simple_paths(overlap_graph, src, dst, 10))
            for path in paths:
                is_good = True
                len_path = 0
                for p in path[1:-1]:
                    len_path += 1
                    if p[1:] in contigs:
                        is_good = False
                        break

                if is_good:
                    graph.add_edge(str(v1), str(v2), label=len_path,
                                       weight=0.1)
                    break
            """

def draw_phylogeny(phylogeny_txt, out_file):
    tree_string, target_name = open(phylogeny_txt, "r").read().splitlines()
    g2c.table[target_name] = "red"

    tree = Phylo.read(StringIO(tree_string), "newick")
    tree.clade.branch_length = 0
    for clade in tree.find_clades():
        if clade.is_terminal():
            clade.color = g2c(clade.name)
    tree.ladderize()
    pylab.rcParams["lines.linewidth"] = 3.0
    Phylo.draw(tree, do_show=False)

    pylab.savefig(out_file)


def do_job(nucmer_coords, debug_dir, circular, only_predicted):
    used_contigs = os.path.join(debug_dir, "used_contigs.txt")
    true_adj_out = os.path.join(debug_dir, "true_edges.dot")
    base_dot = os.path.join(debug_dir, "breakpoint_graph.dot")
    overlap_dot = os.path.join(debug_dir, "../contigs_overlap.dot")
    predicted_dot = os.path.join(debug_dir, "predicted_edges.dot")
    phylogeny_in = os.path.join(debug_dir, "phylogeny.txt")
    phylogeny_out = os.path.join(debug_dir, "phylogeny.png")

    draw_phylogeny(phylogeny_in, phylogeny_out)

    contigs = get_contig_permutations(used_contigs)
    if nucmer_coords != "-":
        alignment = parse_nucmer_coords(nucmer_coords)
        alignment = list(filter(lambda e: e.contig_id in contigs, alignment))
        #alignment = join_collinear(alignment)
        alignment = filter_by_coverage(alignment, 0.7)
        alignment = join_collinear(alignment)
        break_contigs = verify_alignment(alignment, contigs)
        true_adj = get_true_adjacencies(alignment, contigs,
                                        break_contigs, circular)
    else:
        true_adj = []

    output_edges(true_adj, true_adj_out)
    g = compose_breakpoint_graph(base_dot, predicted_dot, true_adj)
    if os.path.exists(overlap_dot):
        add_overlap_edges(g, overlap_dot, used_contigs)
    output_graph(g, debug_dir, only_predicted)


def main():
    descr = ("A script which processes Ragout's debug output and draws some "
            "fancy breakpoint graph pictures. It requires a contigs "
            "alignment on \"true\" reference in nucmer coords format. "
            "Also, Ragout should be run with --debug key to provide "
            "necessary output. Please note, that one should point to "
            "debug dir with a chosen synteny block size (for example "
            "ragout_debug/5000). This script scipt draws only non-trivial "
            "breakpoint graph components.")

    parser = argparse.ArgumentParser(description=descr)
    parser.add_argument("nucmer_coords", metavar="nucmer_coords",
                        help="path to contigs alignment on 'true' reference")
    parser.add_argument("debug_dir", metavar="debug_dir",
                        help="path to debug dir with chosen synteny block size")
    parser.add_argument("--circular", action="store_const", metavar="circular",
                        dest="circular", default=False, const=True,
                        help="indicates that genomes are circular (like bacterial)")
    parser.add_argument("--predicted", action="store_const", metavar="predicted",
                        dest="predicted", default=False, const=True,
                        help="draw only graph components which have predicted edges")
    args = parser.parse_args()

    do_job(args.nucmer_coords, args.debug_dir, args.circular, args.predicted)

if __name__ == "__main__":
    main()
back to top