https://github.com/cran/sparseFLMM
Revision 3d1203b48f7c62e32d347f479e8b295770f2f806 authored by Jona Cederbaum on 11 September 2020, 11:20:02 UTC, committed by cran-robot on 11 September 2020, 11:20:02 UTC
1 parent 5f8586c
Tip revision: 3d1203b48f7c62e32d347f479e8b295770f2f806 authored by Jona Cederbaum on 11 September 2020, 11:20:02 UTC
version 0.3.1
version 0.3.1
Tip revision: 3d1203b
tri_constraint_constructor.R
###################################################################################
# author: Jona Cederbaum (with thanks to Fabian Scheipl)
# NOTE: this constructor builds on the wrapper function smoothCon provided
# by Simon Wood in package mgcv.
###################################################################################
# description: smooth construct class for smoothing with our symmetry constraint
# NOTE: this class is so far applicable to auto-covariances only.
# It is implemented for tensor product P-splines and
# allows for two different penalty types.
# So far, it assumes the same number and type of basis functions in each direction.
###################################################################################
######################
# underlying procedure
######################
# 1.) For each auto-covariance, we first build the marginal spline design matrices and the corresponding
# marginal difference penalties.
# 2.) The tensor product of the marginal design matrices is built and the bivariate penalty matrix is set up.
# 3.) The constraint matrix is applied to the tensor product design matrix and to the penalty matrix.
##############
# what is what
##############
# k: number of basis functions
# bsmargin: type of penalty for both directions
# m: splines and difference order
# kroneckersum: which penalty matrix should be used
## TRUE to specify a Kronecker sum penalty of the form: S1 \otimes I + I \otimes S2
## FALSE to specify a Kronecker product penalty of the form: S1 \otimes S2
###################
# constraint matrix
###################
#' Construct symmetry constraint matrix for bivariate symmetric smoothing.
#'
#' This function can be used to construct a symmetry constraint matrix that imposes
#' a symmetry constraint on spline coefficients in symmetric bivariate smoothing problems and is especially
#' designed for constructing objects of the class "symm.smooth", see \code{\link[sparseFLMM]{smooth.construct.symm.smooth.spec}}.
#'
#' @details Imposing a symmetry constraint to the spline coefficients in order to obtain a reduced coefficient vector is
#' equivalent to right multiplication of the bivariate design matrix
#' with the symmetry constraint matrix obtained with function \code{make_summation_matrix}.
#' The penalty matrix of the bivariate smooth needs to be adjusted to the reduced coefficient vector
#' by left and right multiplication with the symmetry constraint matrix.
#' This function is used in the constructor function \code{\link[sparseFLMM]{smooth.construct.symm.smooth.spec}}.
#'
#'
#' @param F number of marginal basis functions.
#' @seealso \code{\link[mgcv]{smooth.construct}} and \code{\link[mgcv]{smoothCon}} for details on constructors
#' @export
#' @return A symmetry constraint matrix of dimension \eqn{F^2 x F(F+1)/2}.
#' @references Cederbaum, Scheipl, Greven (2016): Fast symmetric additive covariance smoothing.
#' Submitted on arXiv.
make_summation_matrix <- function(F){
ind_mat <- matrix(1:F^2, nrow = F, ncol = F) # index square
pairs <- cbind(c(ind_mat), c(t(ind_mat))) # all pairs using transposed = mirror
cons <- pairs[pairs[, 1]<pairs[, 2], , drop = FALSE] # pairs to use
C <- diag(F^2) # initialize matrix
C[, apply(cons, 1, min)] <-C[, cons[, 1]] + C[, cons[, 2]] # add up paired columns
C <- C[, -apply(cons, 1, max)] # remove unnecessary columns
C
}
######################
# constructor function
######################
#' Symmetric bivariate smooths constructor
#'
#' The \code{symm} class is a new smooth class that is appropriate for symmetric bivariate smooths, e.g. of covariance functions,
#' using tensor-product smooths in a \code{gam} formula. A symmetry constraint matrix is constructed
#' (see \code{\link[sparseFLMM]{make_summation_matrix}}) to impose
#' a symmetry constraint on the spline coefficients, which considerably reduces the number of coefficients that have to be estimated.
#'
#' @details The underlying procedure is the following: First, the marginal spline design matrices and the corresponding
#' marginal difference penalties are built. Second, the tensor product of the marginal design matrices is built
#' and the bivariate penalty matrix is set up. Third, the constraint matrix is applied
#' to the tensor product design matrix and to the penalty matrix.
#'
#' @param object is a smooth specification object or a smooth object.
#' @param data a data frame, model frame or list containing the values
#' of the (named) covariates at which the smooth term is to be evaluated.
#' @param knots an optional data frame supplying any knot locations
#' to be supplied for basis construction.
#' @seealso \code{\link[mgcv]{smooth.construct}} and \code{\link[mgcv]{smoothCon}} for details on constructors
#' @export
#' @return An object of class "symm.smooth". See \code{\link[mgcv]{smooth.construct}} for the elements it will contain.
#' @references Cederbaum, Scheipl, Greven (2016): Fast symmetric additive covariance smoothing.
#' Submitted on arXiv.
smooth.construct.symm.smooth.spec <- function(object, data, knots){
##############
# check inputs
##############
if(length(object$term) != 2) stop("basis only handels 2D smooths") # check if two marginal smooths
x <- data[[object$term[1]]]
y <- data[[object$term[2]]]
if(length(unique(x)) < object$bs.dim) warning("basis dimension is larger than number of unique covariates")
#############################
# set defaults if no optional
# arguments are given
#############################
if(is.null(object$xt))
object$xt <- list(bsmargin = "ps", kroneckersum = TRUE) # set defaults
if(is.null(object$xt$kroneckersum)) # if only kroneckersum is missing in xt
object$xt$kroneckersum <- TRUE
if(is.null(object$xt$bsmargin)) # if only bsmargin is missing in xt
object$xt$bsmargin <- "ps"
if(object$xt$bsmargin != "ps") stop("marginal smooth class need to be 'ps'") # only allow marginal b-splines
#########################
# check input for margins
#########################
if (length(object$p.order) == 1){ # if e.g. m = c(1) -> m = c(1, 1)
m <- rep(object$p.order, 2)
}else{
m <- object$p.order # m[1] - basis order, m[2] - penalty order
}
m[is.na(m)] <- 2 # default if object$p.order is missing -> m = c(2, 2)
object$p.order <- m
if (object$bs.dim<0) object$bs.dim <- max(10, m[1]) # default
nk <- object$bs.dim - m[1] # number of interior knots
if (nk <= 0) stop("basis dimension too small for b-spline order")
#############
# check knots
#############
k1 <- knots[[object$term[1]]]
k2 <- knots[[object$term[2]]]
if(!is.null(k1) & !is.null(k2)){
if((k1 != k2)) stop("number of specified knots is not equal for both margins")
}
Sm <- list()
##############################
# build marginal design matrix
# and marginal penalties
##############################
smooth1 <- smooth.construct(eval(as.call(list(as.symbol("s"), as.symbol(object$term[1]), bs = object$xt$bsmargin,
k = object$bs.dim, m = object$p.order))), data = data, knots = knots)
smooth2 <- smooth.construct(eval(as.call(list(as.symbol("s"), as.symbol(object$term[2]), bs = object$xt$bsmargin,
k = object$bs.dim, m = object$p.order))), data = data, knots = knots)
############################
# build tensor product model
# matrix and penalty matrix
############################
X <- tensor.prod.model.matrix(X = list(smooth1$X, smooth2$X))
Sm[[1]] <- smooth1$S[[1]]
Sm[[2]] <- smooth2$S[[1]]
if(object$xt$kroneckersum){
S <- tensor.prod.penalties(list(Sm[[1]], Sm[[2]]))
S <- S[[1]] + S[[2]]
} else{
S <- Sm[[1]]%x%Sm[[2]]
}
################################################
# constraint equal coefficients by summation
# of columns of X and adaption of penalty matrix
################################################
Z <- make_summation_matrix(F = object$bs.dim)
X_tri <- X %*% Z
S_tri <- t(Z) %*% S %*% Z
# rank and null space dimension of penalty matrix
r <- qr(S_tri)$rank
nsd <- nrow(S_tri)-r
#########################
# make symm.smooth object
#########################
object$S <- list(S_tri) # penalty
object$X <- X_tri # design matrix
object$rank <- r
object$null.space.dim <- nsd # dimension of unpenalized space
object$m <- m # store p-splines specific info
object$knots <- k1
object$margin<list()
object$margin[[1]] <- smooth1
object$margin[[2]] <- smooth2
class(object) <- "symm.smooth" # gives object a class
object
}
##########################
# predict method function
##########################
# needed for functions plot.gam(), model.matrix()
# also needed when bam() is used instead of gam()
# NOTE: the object here is: gam$smooth[[i]] of class symm.smooth which
# can also be generated using smooth.construct()
#' Predict matrix method for symmetric bivariate smooths.
#'
#' @param object is a \code{symm.smooth} object created by \code{\link{smooth.construct.symm.smooth.spec}},
#' see \code{\link[mgcv]{smooth.construct}}.
#' @param data see \code{\link[mgcv]{smooth.construct}}.
#' @seealso \code{\link[mgcv]{Predict.matrix}} and \code{\link[mgcv]{smoothCon}} for details on constructors.
#' @export
Predict.matrix.symm.smooth <- function(object, data){
m <- length(object$margin)
X <- list()
for(i in 1:m){
term <- object$margin[[i]]$term
dat <- list()
for(j in 1:length(term)){
dat[[term[j]]] <- data[[term[j]]]
}
X[[i]] <- PredictMat(object$margin[[i]], dat, n = length(dat[[1]]))
}
X <- tensor.prod.model.matrix(X)
############################################
# constraint equal coefficients by summation
# of columns of X and adaption of penalty
############################################
Z <- make_summation_matrix(F = object$bs.dim)
X_tri <- X %*% Z
X_tri
}
###########################################################################

Computing file changes ...