https://github.com/torvalds/linux
Revision a4412fdd49dc011bcc2c0d81ac4cab7457092650 authored by Steven Rostedt (Google) on 21 November 2022, 15:44:03 UTC, committed by Linus Torvalds on 01 December 2022, 21:14:21 UTC
The config to be able to inject error codes into any function annotated
with ALLOW_ERROR_INJECTION() is enabled when FUNCTION_ERROR_INJECTION is
enabled.  But unfortunately, this is always enabled on x86 when KPROBES
is enabled, and there's no way to turn it off.

As kprobes is useful for observability of the kernel, it is useful to
have it enabled in production environments.  But error injection should
be avoided.  Add a prompt to the config to allow it to be disabled even
when kprobes is enabled, and get rid of the "def_bool y".

This is a kernel debug feature (it's in Kconfig.debug), and should have
never been something enabled by default.

Cc: stable@vger.kernel.org
Fixes: 540adea3809f6 ("error-injection: Separate error-injection from kprobe")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1 parent 355479c
Raw File
Tip revision: a4412fdd49dc011bcc2c0d81ac4cab7457092650 authored by Steven Rostedt (Google) on 21 November 2022, 15:44:03 UTC
error-injection: Add prompt for function error injection
Tip revision: a4412fd
mq-deadline.c
// SPDX-License-Identifier: GPL-2.0
/*
 *  MQ Deadline i/o scheduler - adaptation of the legacy deadline scheduler,
 *  for the blk-mq scheduling framework
 *
 *  Copyright (C) 2016 Jens Axboe <axboe@kernel.dk>
 */
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/blkdev.h>
#include <linux/blk-mq.h>
#include <linux/bio.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/compiler.h>
#include <linux/rbtree.h>
#include <linux/sbitmap.h>

#include <trace/events/block.h>

#include "elevator.h"
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-debugfs.h"
#include "blk-mq-tag.h"
#include "blk-mq-sched.h"

/*
 * See Documentation/block/deadline-iosched.rst
 */
static const int read_expire = HZ / 2;  /* max time before a read is submitted. */
static const int write_expire = 5 * HZ; /* ditto for writes, these limits are SOFT! */
/*
 * Time after which to dispatch lower priority requests even if higher
 * priority requests are pending.
 */
static const int prio_aging_expire = 10 * HZ;
static const int writes_starved = 2;    /* max times reads can starve a write */
static const int fifo_batch = 16;       /* # of sequential requests treated as one
				     by the above parameters. For throughput. */

enum dd_data_dir {
	DD_READ		= READ,
	DD_WRITE	= WRITE,
};

enum { DD_DIR_COUNT = 2 };

enum dd_prio {
	DD_RT_PRIO	= 0,
	DD_BE_PRIO	= 1,
	DD_IDLE_PRIO	= 2,
	DD_PRIO_MAX	= 2,
};

enum { DD_PRIO_COUNT = 3 };

/*
 * I/O statistics per I/O priority. It is fine if these counters overflow.
 * What matters is that these counters are at least as wide as
 * log2(max_outstanding_requests).
 */
struct io_stats_per_prio {
	uint32_t inserted;
	uint32_t merged;
	uint32_t dispatched;
	atomic_t completed;
};

/*
 * Deadline scheduler data per I/O priority (enum dd_prio). Requests are
 * present on both sort_list[] and fifo_list[].
 */
struct dd_per_prio {
	struct list_head dispatch;
	struct rb_root sort_list[DD_DIR_COUNT];
	struct list_head fifo_list[DD_DIR_COUNT];
	/* Next request in FIFO order. Read, write or both are NULL. */
	struct request *next_rq[DD_DIR_COUNT];
	struct io_stats_per_prio stats;
};

struct deadline_data {
	/*
	 * run time data
	 */

	struct dd_per_prio per_prio[DD_PRIO_COUNT];

	/* Data direction of latest dispatched request. */
	enum dd_data_dir last_dir;
	unsigned int batching;		/* number of sequential requests made */
	unsigned int starved;		/* times reads have starved writes */

	/*
	 * settings that change how the i/o scheduler behaves
	 */
	int fifo_expire[DD_DIR_COUNT];
	int fifo_batch;
	int writes_starved;
	int front_merges;
	u32 async_depth;
	int prio_aging_expire;

	spinlock_t lock;
	spinlock_t zone_lock;
};

/* Maps an I/O priority class to a deadline scheduler priority. */
static const enum dd_prio ioprio_class_to_prio[] = {
	[IOPRIO_CLASS_NONE]	= DD_BE_PRIO,
	[IOPRIO_CLASS_RT]	= DD_RT_PRIO,
	[IOPRIO_CLASS_BE]	= DD_BE_PRIO,
	[IOPRIO_CLASS_IDLE]	= DD_IDLE_PRIO,
};

static inline struct rb_root *
deadline_rb_root(struct dd_per_prio *per_prio, struct request *rq)
{
	return &per_prio->sort_list[rq_data_dir(rq)];
}

/*
 * Returns the I/O priority class (IOPRIO_CLASS_*) that has been assigned to a
 * request.
 */
static u8 dd_rq_ioclass(struct request *rq)
{
	return IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
}

/*
 * get the request after `rq' in sector-sorted order
 */
static inline struct request *
deadline_latter_request(struct request *rq)
{
	struct rb_node *node = rb_next(&rq->rb_node);

	if (node)
		return rb_entry_rq(node);

	return NULL;
}

static void
deadline_add_rq_rb(struct dd_per_prio *per_prio, struct request *rq)
{
	struct rb_root *root = deadline_rb_root(per_prio, rq);

	elv_rb_add(root, rq);
}

static inline void
deadline_del_rq_rb(struct dd_per_prio *per_prio, struct request *rq)
{
	const enum dd_data_dir data_dir = rq_data_dir(rq);

	if (per_prio->next_rq[data_dir] == rq)
		per_prio->next_rq[data_dir] = deadline_latter_request(rq);

	elv_rb_del(deadline_rb_root(per_prio, rq), rq);
}

/*
 * remove rq from rbtree and fifo.
 */
static void deadline_remove_request(struct request_queue *q,
				    struct dd_per_prio *per_prio,
				    struct request *rq)
{
	list_del_init(&rq->queuelist);

	/*
	 * We might not be on the rbtree, if we are doing an insert merge
	 */
	if (!RB_EMPTY_NODE(&rq->rb_node))
		deadline_del_rq_rb(per_prio, rq);

	elv_rqhash_del(q, rq);
	if (q->last_merge == rq)
		q->last_merge = NULL;
}

static void dd_request_merged(struct request_queue *q, struct request *req,
			      enum elv_merge type)
{
	struct deadline_data *dd = q->elevator->elevator_data;
	const u8 ioprio_class = dd_rq_ioclass(req);
	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
	struct dd_per_prio *per_prio = &dd->per_prio[prio];

	/*
	 * if the merge was a front merge, we need to reposition request
	 */
	if (type == ELEVATOR_FRONT_MERGE) {
		elv_rb_del(deadline_rb_root(per_prio, req), req);
		deadline_add_rq_rb(per_prio, req);
	}
}

/*
 * Callback function that is invoked after @next has been merged into @req.
 */
static void dd_merged_requests(struct request_queue *q, struct request *req,
			       struct request *next)
{
	struct deadline_data *dd = q->elevator->elevator_data;
	const u8 ioprio_class = dd_rq_ioclass(next);
	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];

	lockdep_assert_held(&dd->lock);

	dd->per_prio[prio].stats.merged++;

	/*
	 * if next expires before rq, assign its expire time to rq
	 * and move into next position (next will be deleted) in fifo
	 */
	if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
		if (time_before((unsigned long)next->fifo_time,
				(unsigned long)req->fifo_time)) {
			list_move(&req->queuelist, &next->queuelist);
			req->fifo_time = next->fifo_time;
		}
	}

	/*
	 * kill knowledge of next, this one is a goner
	 */
	deadline_remove_request(q, &dd->per_prio[prio], next);
}

/*
 * move an entry to dispatch queue
 */
static void
deadline_move_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
		      struct request *rq)
{
	const enum dd_data_dir data_dir = rq_data_dir(rq);

	per_prio->next_rq[data_dir] = deadline_latter_request(rq);

	/*
	 * take it off the sort and fifo list
	 */
	deadline_remove_request(rq->q, per_prio, rq);
}

/* Number of requests queued for a given priority level. */
static u32 dd_queued(struct deadline_data *dd, enum dd_prio prio)
{
	const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats;

	lockdep_assert_held(&dd->lock);

	return stats->inserted - atomic_read(&stats->completed);
}

/*
 * deadline_check_fifo returns 0 if there are no expired requests on the fifo,
 * 1 otherwise. Requires !list_empty(&dd->fifo_list[data_dir])
 */
static inline int deadline_check_fifo(struct dd_per_prio *per_prio,
				      enum dd_data_dir data_dir)
{
	struct request *rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next);

	/*
	 * rq is expired!
	 */
	if (time_after_eq(jiffies, (unsigned long)rq->fifo_time))
		return 1;

	return 0;
}

/*
 * For the specified data direction, return the next request to
 * dispatch using arrival ordered lists.
 */
static struct request *
deadline_fifo_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
		      enum dd_data_dir data_dir)
{
	struct request *rq;
	unsigned long flags;

	if (list_empty(&per_prio->fifo_list[data_dir]))
		return NULL;

	rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next);
	if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q))
		return rq;

	/*
	 * Look for a write request that can be dispatched, that is one with
	 * an unlocked target zone.
	 */
	spin_lock_irqsave(&dd->zone_lock, flags);
	list_for_each_entry(rq, &per_prio->fifo_list[DD_WRITE], queuelist) {
		if (blk_req_can_dispatch_to_zone(rq))
			goto out;
	}
	rq = NULL;
out:
	spin_unlock_irqrestore(&dd->zone_lock, flags);

	return rq;
}

/*
 * For the specified data direction, return the next request to
 * dispatch using sector position sorted lists.
 */
static struct request *
deadline_next_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
		      enum dd_data_dir data_dir)
{
	struct request *rq;
	unsigned long flags;

	rq = per_prio->next_rq[data_dir];
	if (!rq)
		return NULL;

	if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q))
		return rq;

	/*
	 * Look for a write request that can be dispatched, that is one with
	 * an unlocked target zone.
	 */
	spin_lock_irqsave(&dd->zone_lock, flags);
	while (rq) {
		if (blk_req_can_dispatch_to_zone(rq))
			break;
		rq = deadline_latter_request(rq);
	}
	spin_unlock_irqrestore(&dd->zone_lock, flags);

	return rq;
}

/*
 * Returns true if and only if @rq started after @latest_start where
 * @latest_start is in jiffies.
 */
static bool started_after(struct deadline_data *dd, struct request *rq,
			  unsigned long latest_start)
{
	unsigned long start_time = (unsigned long)rq->fifo_time;

	start_time -= dd->fifo_expire[rq_data_dir(rq)];

	return time_after(start_time, latest_start);
}

/*
 * deadline_dispatch_requests selects the best request according to
 * read/write expire, fifo_batch, etc and with a start time <= @latest_start.
 */
static struct request *__dd_dispatch_request(struct deadline_data *dd,
					     struct dd_per_prio *per_prio,
					     unsigned long latest_start)
{
	struct request *rq, *next_rq;
	enum dd_data_dir data_dir;
	enum dd_prio prio;
	u8 ioprio_class;

	lockdep_assert_held(&dd->lock);

	if (!list_empty(&per_prio->dispatch)) {
		rq = list_first_entry(&per_prio->dispatch, struct request,
				      queuelist);
		if (started_after(dd, rq, latest_start))
			return NULL;
		list_del_init(&rq->queuelist);
		goto done;
	}

	/*
	 * batches are currently reads XOR writes
	 */
	rq = deadline_next_request(dd, per_prio, dd->last_dir);
	if (rq && dd->batching < dd->fifo_batch)
		/* we have a next request are still entitled to batch */
		goto dispatch_request;

	/*
	 * at this point we are not running a batch. select the appropriate
	 * data direction (read / write)
	 */

	if (!list_empty(&per_prio->fifo_list[DD_READ])) {
		BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_READ]));

		if (deadline_fifo_request(dd, per_prio, DD_WRITE) &&
		    (dd->starved++ >= dd->writes_starved))
			goto dispatch_writes;

		data_dir = DD_READ;

		goto dispatch_find_request;
	}

	/*
	 * there are either no reads or writes have been starved
	 */

	if (!list_empty(&per_prio->fifo_list[DD_WRITE])) {
dispatch_writes:
		BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_WRITE]));

		dd->starved = 0;

		data_dir = DD_WRITE;

		goto dispatch_find_request;
	}

	return NULL;

dispatch_find_request:
	/*
	 * we are not running a batch, find best request for selected data_dir
	 */
	next_rq = deadline_next_request(dd, per_prio, data_dir);
	if (deadline_check_fifo(per_prio, data_dir) || !next_rq) {
		/*
		 * A deadline has expired, the last request was in the other
		 * direction, or we have run out of higher-sectored requests.
		 * Start again from the request with the earliest expiry time.
		 */
		rq = deadline_fifo_request(dd, per_prio, data_dir);
	} else {
		/*
		 * The last req was the same dir and we have a next request in
		 * sort order. No expired requests so continue on from here.
		 */
		rq = next_rq;
	}

	/*
	 * For a zoned block device, if we only have writes queued and none of
	 * them can be dispatched, rq will be NULL.
	 */
	if (!rq)
		return NULL;

	dd->last_dir = data_dir;
	dd->batching = 0;

dispatch_request:
	if (started_after(dd, rq, latest_start))
		return NULL;

	/*
	 * rq is the selected appropriate request.
	 */
	dd->batching++;
	deadline_move_request(dd, per_prio, rq);
done:
	ioprio_class = dd_rq_ioclass(rq);
	prio = ioprio_class_to_prio[ioprio_class];
	dd->per_prio[prio].stats.dispatched++;
	/*
	 * If the request needs its target zone locked, do it.
	 */
	blk_req_zone_write_lock(rq);
	rq->rq_flags |= RQF_STARTED;
	return rq;
}

/*
 * Check whether there are any requests with priority other than DD_RT_PRIO
 * that were inserted more than prio_aging_expire jiffies ago.
 */
static struct request *dd_dispatch_prio_aged_requests(struct deadline_data *dd,
						      unsigned long now)
{
	struct request *rq;
	enum dd_prio prio;
	int prio_cnt;

	lockdep_assert_held(&dd->lock);

	prio_cnt = !!dd_queued(dd, DD_RT_PRIO) + !!dd_queued(dd, DD_BE_PRIO) +
		   !!dd_queued(dd, DD_IDLE_PRIO);
	if (prio_cnt < 2)
		return NULL;

	for (prio = DD_BE_PRIO; prio <= DD_PRIO_MAX; prio++) {
		rq = __dd_dispatch_request(dd, &dd->per_prio[prio],
					   now - dd->prio_aging_expire);
		if (rq)
			return rq;
	}

	return NULL;
}

/*
 * Called from blk_mq_run_hw_queue() -> __blk_mq_sched_dispatch_requests().
 *
 * One confusing aspect here is that we get called for a specific
 * hardware queue, but we may return a request that is for a
 * different hardware queue. This is because mq-deadline has shared
 * state for all hardware queues, in terms of sorting, FIFOs, etc.
 */
static struct request *dd_dispatch_request(struct blk_mq_hw_ctx *hctx)
{
	struct deadline_data *dd = hctx->queue->elevator->elevator_data;
	const unsigned long now = jiffies;
	struct request *rq;
	enum dd_prio prio;

	spin_lock(&dd->lock);
	rq = dd_dispatch_prio_aged_requests(dd, now);
	if (rq)
		goto unlock;

	/*
	 * Next, dispatch requests in priority order. Ignore lower priority
	 * requests if any higher priority requests are pending.
	 */
	for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
		rq = __dd_dispatch_request(dd, &dd->per_prio[prio], now);
		if (rq || dd_queued(dd, prio))
			break;
	}

unlock:
	spin_unlock(&dd->lock);

	return rq;
}

/*
 * Called by __blk_mq_alloc_request(). The shallow_depth value set by this
 * function is used by __blk_mq_get_tag().
 */
static void dd_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
{
	struct deadline_data *dd = data->q->elevator->elevator_data;

	/* Do not throttle synchronous reads. */
	if (op_is_sync(opf) && !op_is_write(opf))
		return;

	/*
	 * Throttle asynchronous requests and writes such that these requests
	 * do not block the allocation of synchronous requests.
	 */
	data->shallow_depth = dd->async_depth;
}

/* Called by blk_mq_update_nr_requests(). */
static void dd_depth_updated(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct deadline_data *dd = q->elevator->elevator_data;
	struct blk_mq_tags *tags = hctx->sched_tags;

	dd->async_depth = max(1UL, 3 * q->nr_requests / 4);

	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, dd->async_depth);
}

/* Called by blk_mq_init_hctx() and blk_mq_init_sched(). */
static int dd_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
	dd_depth_updated(hctx);
	return 0;
}

static void dd_exit_sched(struct elevator_queue *e)
{
	struct deadline_data *dd = e->elevator_data;
	enum dd_prio prio;

	for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
		struct dd_per_prio *per_prio = &dd->per_prio[prio];
		const struct io_stats_per_prio *stats = &per_prio->stats;
		uint32_t queued;

		WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_READ]));
		WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_WRITE]));

		spin_lock(&dd->lock);
		queued = dd_queued(dd, prio);
		spin_unlock(&dd->lock);

		WARN_ONCE(queued != 0,
			  "statistics for priority %d: i %u m %u d %u c %u\n",
			  prio, stats->inserted, stats->merged,
			  stats->dispatched, atomic_read(&stats->completed));
	}

	kfree(dd);
}

/*
 * initialize elevator private data (deadline_data).
 */
static int dd_init_sched(struct request_queue *q, struct elevator_type *e)
{
	struct deadline_data *dd;
	struct elevator_queue *eq;
	enum dd_prio prio;
	int ret = -ENOMEM;

	eq = elevator_alloc(q, e);
	if (!eq)
		return ret;

	dd = kzalloc_node(sizeof(*dd), GFP_KERNEL, q->node);
	if (!dd)
		goto put_eq;

	eq->elevator_data = dd;

	for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
		struct dd_per_prio *per_prio = &dd->per_prio[prio];

		INIT_LIST_HEAD(&per_prio->dispatch);
		INIT_LIST_HEAD(&per_prio->fifo_list[DD_READ]);
		INIT_LIST_HEAD(&per_prio->fifo_list[DD_WRITE]);
		per_prio->sort_list[DD_READ] = RB_ROOT;
		per_prio->sort_list[DD_WRITE] = RB_ROOT;
	}
	dd->fifo_expire[DD_READ] = read_expire;
	dd->fifo_expire[DD_WRITE] = write_expire;
	dd->writes_starved = writes_starved;
	dd->front_merges = 1;
	dd->last_dir = DD_WRITE;
	dd->fifo_batch = fifo_batch;
	dd->prio_aging_expire = prio_aging_expire;
	spin_lock_init(&dd->lock);
	spin_lock_init(&dd->zone_lock);

	/* We dispatch from request queue wide instead of hw queue */
	blk_queue_flag_set(QUEUE_FLAG_SQ_SCHED, q);

	q->elevator = eq;
	return 0;

put_eq:
	kobject_put(&eq->kobj);
	return ret;
}

/*
 * Try to merge @bio into an existing request. If @bio has been merged into
 * an existing request, store the pointer to that request into *@rq.
 */
static int dd_request_merge(struct request_queue *q, struct request **rq,
			    struct bio *bio)
{
	struct deadline_data *dd = q->elevator->elevator_data;
	const u8 ioprio_class = IOPRIO_PRIO_CLASS(bio->bi_ioprio);
	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
	struct dd_per_prio *per_prio = &dd->per_prio[prio];
	sector_t sector = bio_end_sector(bio);
	struct request *__rq;

	if (!dd->front_merges)
		return ELEVATOR_NO_MERGE;

	__rq = elv_rb_find(&per_prio->sort_list[bio_data_dir(bio)], sector);
	if (__rq) {
		BUG_ON(sector != blk_rq_pos(__rq));

		if (elv_bio_merge_ok(__rq, bio)) {
			*rq = __rq;
			if (blk_discard_mergable(__rq))
				return ELEVATOR_DISCARD_MERGE;
			return ELEVATOR_FRONT_MERGE;
		}
	}

	return ELEVATOR_NO_MERGE;
}

/*
 * Attempt to merge a bio into an existing request. This function is called
 * before @bio is associated with a request.
 */
static bool dd_bio_merge(struct request_queue *q, struct bio *bio,
		unsigned int nr_segs)
{
	struct deadline_data *dd = q->elevator->elevator_data;
	struct request *free = NULL;
	bool ret;

	spin_lock(&dd->lock);
	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
	spin_unlock(&dd->lock);

	if (free)
		blk_mq_free_request(free);

	return ret;
}

/*
 * add rq to rbtree and fifo
 */
static void dd_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			      bool at_head)
{
	struct request_queue *q = hctx->queue;
	struct deadline_data *dd = q->elevator->elevator_data;
	const enum dd_data_dir data_dir = rq_data_dir(rq);
	u16 ioprio = req_get_ioprio(rq);
	u8 ioprio_class = IOPRIO_PRIO_CLASS(ioprio);
	struct dd_per_prio *per_prio;
	enum dd_prio prio;
	LIST_HEAD(free);

	lockdep_assert_held(&dd->lock);

	/*
	 * This may be a requeue of a write request that has locked its
	 * target zone. If it is the case, this releases the zone lock.
	 */
	blk_req_zone_write_unlock(rq);

	prio = ioprio_class_to_prio[ioprio_class];
	per_prio = &dd->per_prio[prio];
	if (!rq->elv.priv[0]) {
		per_prio->stats.inserted++;
		rq->elv.priv[0] = (void *)(uintptr_t)1;
	}

	if (blk_mq_sched_try_insert_merge(q, rq, &free)) {
		blk_mq_free_requests(&free);
		return;
	}

	trace_block_rq_insert(rq);

	if (at_head) {
		list_add(&rq->queuelist, &per_prio->dispatch);
		rq->fifo_time = jiffies;
	} else {
		deadline_add_rq_rb(per_prio, rq);

		if (rq_mergeable(rq)) {
			elv_rqhash_add(q, rq);
			if (!q->last_merge)
				q->last_merge = rq;
		}

		/*
		 * set expire time and add to fifo list
		 */
		rq->fifo_time = jiffies + dd->fifo_expire[data_dir];
		list_add_tail(&rq->queuelist, &per_prio->fifo_list[data_dir]);
	}
}

/*
 * Called from blk_mq_sched_insert_request() or blk_mq_sched_insert_requests().
 */
static void dd_insert_requests(struct blk_mq_hw_ctx *hctx,
			       struct list_head *list, bool at_head)
{
	struct request_queue *q = hctx->queue;
	struct deadline_data *dd = q->elevator->elevator_data;

	spin_lock(&dd->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		dd_insert_request(hctx, rq, at_head);
	}
	spin_unlock(&dd->lock);
}

/* Callback from inside blk_mq_rq_ctx_init(). */
static void dd_prepare_request(struct request *rq)
{
	rq->elv.priv[0] = NULL;
}

/*
 * Callback from inside blk_mq_free_request().
 *
 * For zoned block devices, write unlock the target zone of
 * completed write requests. Do this while holding the zone lock
 * spinlock so that the zone is never unlocked while deadline_fifo_request()
 * or deadline_next_request() are executing. This function is called for
 * all requests, whether or not these requests complete successfully.
 *
 * For a zoned block device, __dd_dispatch_request() may have stopped
 * dispatching requests if all the queued requests are write requests directed
 * at zones that are already locked due to on-going write requests. To ensure
 * write request dispatch progress in this case, mark the queue as needing a
 * restart to ensure that the queue is run again after completion of the
 * request and zones being unlocked.
 */
static void dd_finish_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct deadline_data *dd = q->elevator->elevator_data;
	const u8 ioprio_class = dd_rq_ioclass(rq);
	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
	struct dd_per_prio *per_prio = &dd->per_prio[prio];

	/*
	 * The block layer core may call dd_finish_request() without having
	 * called dd_insert_requests(). Skip requests that bypassed I/O
	 * scheduling. See also blk_mq_request_bypass_insert().
	 */
	if (!rq->elv.priv[0])
		return;

	atomic_inc(&per_prio->stats.completed);

	if (blk_queue_is_zoned(q)) {
		unsigned long flags;

		spin_lock_irqsave(&dd->zone_lock, flags);
		blk_req_zone_write_unlock(rq);
		if (!list_empty(&per_prio->fifo_list[DD_WRITE]))
			blk_mq_sched_mark_restart_hctx(rq->mq_hctx);
		spin_unlock_irqrestore(&dd->zone_lock, flags);
	}
}

static bool dd_has_work_for_prio(struct dd_per_prio *per_prio)
{
	return !list_empty_careful(&per_prio->dispatch) ||
		!list_empty_careful(&per_prio->fifo_list[DD_READ]) ||
		!list_empty_careful(&per_prio->fifo_list[DD_WRITE]);
}

static bool dd_has_work(struct blk_mq_hw_ctx *hctx)
{
	struct deadline_data *dd = hctx->queue->elevator->elevator_data;
	enum dd_prio prio;

	for (prio = 0; prio <= DD_PRIO_MAX; prio++)
		if (dd_has_work_for_prio(&dd->per_prio[prio]))
			return true;

	return false;
}

/*
 * sysfs parts below
 */
#define SHOW_INT(__FUNC, __VAR)						\
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
{									\
	struct deadline_data *dd = e->elevator_data;			\
									\
	return sysfs_emit(page, "%d\n", __VAR);				\
}
#define SHOW_JIFFIES(__FUNC, __VAR) SHOW_INT(__FUNC, jiffies_to_msecs(__VAR))
SHOW_JIFFIES(deadline_read_expire_show, dd->fifo_expire[DD_READ]);
SHOW_JIFFIES(deadline_write_expire_show, dd->fifo_expire[DD_WRITE]);
SHOW_JIFFIES(deadline_prio_aging_expire_show, dd->prio_aging_expire);
SHOW_INT(deadline_writes_starved_show, dd->writes_starved);
SHOW_INT(deadline_front_merges_show, dd->front_merges);
SHOW_INT(deadline_async_depth_show, dd->async_depth);
SHOW_INT(deadline_fifo_batch_show, dd->fifo_batch);
#undef SHOW_INT
#undef SHOW_JIFFIES

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
{									\
	struct deadline_data *dd = e->elevator_data;			\
	int __data, __ret;						\
									\
	__ret = kstrtoint(page, 0, &__data);				\
	if (__ret < 0)							\
		return __ret;						\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	*(__PTR) = __CONV(__data);					\
	return count;							\
}
#define STORE_INT(__FUNC, __PTR, MIN, MAX)				\
	STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, )
#define STORE_JIFFIES(__FUNC, __PTR, MIN, MAX)				\
	STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, msecs_to_jiffies)
STORE_JIFFIES(deadline_read_expire_store, &dd->fifo_expire[DD_READ], 0, INT_MAX);
STORE_JIFFIES(deadline_write_expire_store, &dd->fifo_expire[DD_WRITE], 0, INT_MAX);
STORE_JIFFIES(deadline_prio_aging_expire_store, &dd->prio_aging_expire, 0, INT_MAX);
STORE_INT(deadline_writes_starved_store, &dd->writes_starved, INT_MIN, INT_MAX);
STORE_INT(deadline_front_merges_store, &dd->front_merges, 0, 1);
STORE_INT(deadline_async_depth_store, &dd->async_depth, 1, INT_MAX);
STORE_INT(deadline_fifo_batch_store, &dd->fifo_batch, 0, INT_MAX);
#undef STORE_FUNCTION
#undef STORE_INT
#undef STORE_JIFFIES

#define DD_ATTR(name) \
	__ATTR(name, 0644, deadline_##name##_show, deadline_##name##_store)

static struct elv_fs_entry deadline_attrs[] = {
	DD_ATTR(read_expire),
	DD_ATTR(write_expire),
	DD_ATTR(writes_starved),
	DD_ATTR(front_merges),
	DD_ATTR(async_depth),
	DD_ATTR(fifo_batch),
	DD_ATTR(prio_aging_expire),
	__ATTR_NULL
};

#ifdef CONFIG_BLK_DEBUG_FS
#define DEADLINE_DEBUGFS_DDIR_ATTRS(prio, data_dir, name)		\
static void *deadline_##name##_fifo_start(struct seq_file *m,		\
					  loff_t *pos)			\
	__acquires(&dd->lock)						\
{									\
	struct request_queue *q = m->private;				\
	struct deadline_data *dd = q->elevator->elevator_data;		\
	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
									\
	spin_lock(&dd->lock);						\
	return seq_list_start(&per_prio->fifo_list[data_dir], *pos);	\
}									\
									\
static void *deadline_##name##_fifo_next(struct seq_file *m, void *v,	\
					 loff_t *pos)			\
{									\
	struct request_queue *q = m->private;				\
	struct deadline_data *dd = q->elevator->elevator_data;		\
	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
									\
	return seq_list_next(v, &per_prio->fifo_list[data_dir], pos);	\
}									\
									\
static void deadline_##name##_fifo_stop(struct seq_file *m, void *v)	\
	__releases(&dd->lock)						\
{									\
	struct request_queue *q = m->private;				\
	struct deadline_data *dd = q->elevator->elevator_data;		\
									\
	spin_unlock(&dd->lock);						\
}									\
									\
static const struct seq_operations deadline_##name##_fifo_seq_ops = {	\
	.start	= deadline_##name##_fifo_start,				\
	.next	= deadline_##name##_fifo_next,				\
	.stop	= deadline_##name##_fifo_stop,				\
	.show	= blk_mq_debugfs_rq_show,				\
};									\
									\
static int deadline_##name##_next_rq_show(void *data,			\
					  struct seq_file *m)		\
{									\
	struct request_queue *q = data;					\
	struct deadline_data *dd = q->elevator->elevator_data;		\
	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
	struct request *rq = per_prio->next_rq[data_dir];		\
									\
	if (rq)								\
		__blk_mq_debugfs_rq_show(m, rq);			\
	return 0;							\
}

DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_READ, read0);
DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_WRITE, write0);
DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_READ, read1);
DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_WRITE, write1);
DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_READ, read2);
DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_WRITE, write2);
#undef DEADLINE_DEBUGFS_DDIR_ATTRS

static int deadline_batching_show(void *data, struct seq_file *m)
{
	struct request_queue *q = data;
	struct deadline_data *dd = q->elevator->elevator_data;

	seq_printf(m, "%u\n", dd->batching);
	return 0;
}

static int deadline_starved_show(void *data, struct seq_file *m)
{
	struct request_queue *q = data;
	struct deadline_data *dd = q->elevator->elevator_data;

	seq_printf(m, "%u\n", dd->starved);
	return 0;
}

static int dd_async_depth_show(void *data, struct seq_file *m)
{
	struct request_queue *q = data;
	struct deadline_data *dd = q->elevator->elevator_data;

	seq_printf(m, "%u\n", dd->async_depth);
	return 0;
}

static int dd_queued_show(void *data, struct seq_file *m)
{
	struct request_queue *q = data;
	struct deadline_data *dd = q->elevator->elevator_data;
	u32 rt, be, idle;

	spin_lock(&dd->lock);
	rt = dd_queued(dd, DD_RT_PRIO);
	be = dd_queued(dd, DD_BE_PRIO);
	idle = dd_queued(dd, DD_IDLE_PRIO);
	spin_unlock(&dd->lock);

	seq_printf(m, "%u %u %u\n", rt, be, idle);

	return 0;
}

/* Number of requests owned by the block driver for a given priority. */
static u32 dd_owned_by_driver(struct deadline_data *dd, enum dd_prio prio)
{
	const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats;

	lockdep_assert_held(&dd->lock);

	return stats->dispatched + stats->merged -
		atomic_read(&stats->completed);
}

static int dd_owned_by_driver_show(void *data, struct seq_file *m)
{
	struct request_queue *q = data;
	struct deadline_data *dd = q->elevator->elevator_data;
	u32 rt, be, idle;

	spin_lock(&dd->lock);
	rt = dd_owned_by_driver(dd, DD_RT_PRIO);
	be = dd_owned_by_driver(dd, DD_BE_PRIO);
	idle = dd_owned_by_driver(dd, DD_IDLE_PRIO);
	spin_unlock(&dd->lock);

	seq_printf(m, "%u %u %u\n", rt, be, idle);

	return 0;
}

#define DEADLINE_DISPATCH_ATTR(prio)					\
static void *deadline_dispatch##prio##_start(struct seq_file *m,	\
					     loff_t *pos)		\
	__acquires(&dd->lock)						\
{									\
	struct request_queue *q = m->private;				\
	struct deadline_data *dd = q->elevator->elevator_data;		\
	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
									\
	spin_lock(&dd->lock);						\
	return seq_list_start(&per_prio->dispatch, *pos);		\
}									\
									\
static void *deadline_dispatch##prio##_next(struct seq_file *m,		\
					    void *v, loff_t *pos)	\
{									\
	struct request_queue *q = m->private;				\
	struct deadline_data *dd = q->elevator->elevator_data;		\
	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
									\
	return seq_list_next(v, &per_prio->dispatch, pos);		\
}									\
									\
static void deadline_dispatch##prio##_stop(struct seq_file *m, void *v)	\
	__releases(&dd->lock)						\
{									\
	struct request_queue *q = m->private;				\
	struct deadline_data *dd = q->elevator->elevator_data;		\
									\
	spin_unlock(&dd->lock);						\
}									\
									\
static const struct seq_operations deadline_dispatch##prio##_seq_ops = { \
	.start	= deadline_dispatch##prio##_start,			\
	.next	= deadline_dispatch##prio##_next,			\
	.stop	= deadline_dispatch##prio##_stop,			\
	.show	= blk_mq_debugfs_rq_show,				\
}

DEADLINE_DISPATCH_ATTR(0);
DEADLINE_DISPATCH_ATTR(1);
DEADLINE_DISPATCH_ATTR(2);
#undef DEADLINE_DISPATCH_ATTR

#define DEADLINE_QUEUE_DDIR_ATTRS(name)					\
	{#name "_fifo_list", 0400,					\
			.seq_ops = &deadline_##name##_fifo_seq_ops}
#define DEADLINE_NEXT_RQ_ATTR(name)					\
	{#name "_next_rq", 0400, deadline_##name##_next_rq_show}
static const struct blk_mq_debugfs_attr deadline_queue_debugfs_attrs[] = {
	DEADLINE_QUEUE_DDIR_ATTRS(read0),
	DEADLINE_QUEUE_DDIR_ATTRS(write0),
	DEADLINE_QUEUE_DDIR_ATTRS(read1),
	DEADLINE_QUEUE_DDIR_ATTRS(write1),
	DEADLINE_QUEUE_DDIR_ATTRS(read2),
	DEADLINE_QUEUE_DDIR_ATTRS(write2),
	DEADLINE_NEXT_RQ_ATTR(read0),
	DEADLINE_NEXT_RQ_ATTR(write0),
	DEADLINE_NEXT_RQ_ATTR(read1),
	DEADLINE_NEXT_RQ_ATTR(write1),
	DEADLINE_NEXT_RQ_ATTR(read2),
	DEADLINE_NEXT_RQ_ATTR(write2),
	{"batching", 0400, deadline_batching_show},
	{"starved", 0400, deadline_starved_show},
	{"async_depth", 0400, dd_async_depth_show},
	{"dispatch0", 0400, .seq_ops = &deadline_dispatch0_seq_ops},
	{"dispatch1", 0400, .seq_ops = &deadline_dispatch1_seq_ops},
	{"dispatch2", 0400, .seq_ops = &deadline_dispatch2_seq_ops},
	{"owned_by_driver", 0400, dd_owned_by_driver_show},
	{"queued", 0400, dd_queued_show},
	{},
};
#undef DEADLINE_QUEUE_DDIR_ATTRS
#endif

static struct elevator_type mq_deadline = {
	.ops = {
		.depth_updated		= dd_depth_updated,
		.limit_depth		= dd_limit_depth,
		.insert_requests	= dd_insert_requests,
		.dispatch_request	= dd_dispatch_request,
		.prepare_request	= dd_prepare_request,
		.finish_request		= dd_finish_request,
		.next_request		= elv_rb_latter_request,
		.former_request		= elv_rb_former_request,
		.bio_merge		= dd_bio_merge,
		.request_merge		= dd_request_merge,
		.requests_merged	= dd_merged_requests,
		.request_merged		= dd_request_merged,
		.has_work		= dd_has_work,
		.init_sched		= dd_init_sched,
		.exit_sched		= dd_exit_sched,
		.init_hctx		= dd_init_hctx,
	},

#ifdef CONFIG_BLK_DEBUG_FS
	.queue_debugfs_attrs = deadline_queue_debugfs_attrs,
#endif
	.elevator_attrs = deadline_attrs,
	.elevator_name = "mq-deadline",
	.elevator_alias = "deadline",
	.elevator_features = ELEVATOR_F_ZBD_SEQ_WRITE,
	.elevator_owner = THIS_MODULE,
};
MODULE_ALIAS("mq-deadline-iosched");

static int __init deadline_init(void)
{
	return elv_register(&mq_deadline);
}

static void __exit deadline_exit(void)
{
	elv_unregister(&mq_deadline);
}

module_init(deadline_init);
module_exit(deadline_exit);

MODULE_AUTHOR("Jens Axboe, Damien Le Moal and Bart Van Assche");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("MQ deadline IO scheduler");
back to top