https://github.com/torvalds/linux
Revision a4412fdd49dc011bcc2c0d81ac4cab7457092650 authored by Steven Rostedt (Google) on 21 November 2022, 15:44:03 UTC, committed by Linus Torvalds on 01 December 2022, 21:14:21 UTC
The config to be able to inject error codes into any function annotated
with ALLOW_ERROR_INJECTION() is enabled when FUNCTION_ERROR_INJECTION is
enabled.  But unfortunately, this is always enabled on x86 when KPROBES
is enabled, and there's no way to turn it off.

As kprobes is useful for observability of the kernel, it is useful to
have it enabled in production environments.  But error injection should
be avoided.  Add a prompt to the config to allow it to be disabled even
when kprobes is enabled, and get rid of the "def_bool y".

This is a kernel debug feature (it's in Kconfig.debug), and should have
never been something enabled by default.

Cc: stable@vger.kernel.org
Fixes: 540adea3809f6 ("error-injection: Separate error-injection from kprobe")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1 parent 355479c
Raw File
Tip revision: a4412fdd49dc011bcc2c0d81ac4cab7457092650 authored by Steven Rostedt (Google) on 21 November 2022, 15:44:03 UTC
error-injection: Add prompt for function error injection
Tip revision: a4412fd
binfmt_flat.c
// SPDX-License-Identifier: GPL-2.0
/****************************************************************************/
/*
 *  linux/fs/binfmt_flat.c
 *
 *	Copyright (C) 2000-2003 David McCullough <davidm@snapgear.com>
 *	Copyright (C) 2002 Greg Ungerer <gerg@snapgear.com>
 *	Copyright (C) 2002 SnapGear, by Paul Dale <pauli@snapgear.com>
 *	Copyright (C) 2000, 2001 Lineo, by David McCullough <davidm@lineo.com>
 *  based heavily on:
 *
 *  linux/fs/binfmt_aout.c:
 *      Copyright (C) 1991, 1992, 1996  Linus Torvalds
 *  linux/fs/binfmt_flat.c for 2.0 kernel
 *	    Copyright (C) 1998  Kenneth Albanowski <kjahds@kjahds.com>
 *	JAN/99 -- coded full program relocation (gerg@snapgear.com)
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/string.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/ptrace.h>
#include <linux/user.h>
#include <linux/slab.h>
#include <linux/binfmts.h>
#include <linux/personality.h>
#include <linux/init.h>
#include <linux/flat.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>

#include <asm/byteorder.h>
#include <asm/unaligned.h>
#include <asm/cacheflush.h>
#include <asm/page.h>
#include <asm/flat.h>

#ifndef flat_get_relocate_addr
#define flat_get_relocate_addr(rel)	(rel)
#endif

/****************************************************************************/

/*
 * User data (data section and bss) needs to be aligned.
 * We pick 0x20 here because it is the max value elf2flt has always
 * used in producing FLAT files, and because it seems to be large
 * enough to make all the gcc alignment related tests happy.
 */
#define FLAT_DATA_ALIGN	(0x20)

/*
 * User data (stack) also needs to be aligned.
 * Here we can be a bit looser than the data sections since this
 * needs to only meet arch ABI requirements.
 */
#define FLAT_STACK_ALIGN	max_t(unsigned long, sizeof(void *), ARCH_SLAB_MINALIGN)

#define RELOC_FAILED 0xff00ff01		/* Relocation incorrect somewhere */
#define UNLOADED_LIB 0x7ff000ff		/* Placeholder for unused library */

#define MAX_SHARED_LIBS			(1)

#ifdef CONFIG_BINFMT_FLAT_NO_DATA_START_OFFSET
#define DATA_START_OFFSET_WORDS		(0)
#else
#define DATA_START_OFFSET_WORDS		(MAX_SHARED_LIBS)
#endif

struct lib_info {
	struct {
		unsigned long start_code;		/* Start of text segment */
		unsigned long start_data;		/* Start of data segment */
		unsigned long start_brk;		/* End of data segment */
		unsigned long text_len;			/* Length of text segment */
		unsigned long entry;			/* Start address for this module */
		unsigned long build_date;		/* When this one was compiled */
		bool loaded;				/* Has this library been loaded? */
	} lib_list[MAX_SHARED_LIBS];
};

static int load_flat_binary(struct linux_binprm *);

static struct linux_binfmt flat_format = {
	.module		= THIS_MODULE,
	.load_binary	= load_flat_binary,
};


/****************************************************************************/
/*
 * create_flat_tables() parses the env- and arg-strings in new user
 * memory and creates the pointer tables from them, and puts their
 * addresses on the "stack", recording the new stack pointer value.
 */

static int create_flat_tables(struct linux_binprm *bprm, unsigned long arg_start)
{
	char __user *p;
	unsigned long __user *sp;
	long i, len;

	p = (char __user *)arg_start;
	sp = (unsigned long __user *)current->mm->start_stack;

	sp -= bprm->envc + 1;
	sp -= bprm->argc + 1;
	if (IS_ENABLED(CONFIG_BINFMT_FLAT_ARGVP_ENVP_ON_STACK))
		sp -= 2; /* argvp + envp */
	sp -= 1;  /* &argc */

	current->mm->start_stack = (unsigned long)sp & -FLAT_STACK_ALIGN;
	sp = (unsigned long __user *)current->mm->start_stack;

	if (put_user(bprm->argc, sp++))
		return -EFAULT;
	if (IS_ENABLED(CONFIG_BINFMT_FLAT_ARGVP_ENVP_ON_STACK)) {
		unsigned long argv, envp;
		argv = (unsigned long)(sp + 2);
		envp = (unsigned long)(sp + 2 + bprm->argc + 1);
		if (put_user(argv, sp++) || put_user(envp, sp++))
			return -EFAULT;
	}

	current->mm->arg_start = (unsigned long)p;
	for (i = bprm->argc; i > 0; i--) {
		if (put_user((unsigned long)p, sp++))
			return -EFAULT;
		len = strnlen_user(p, MAX_ARG_STRLEN);
		if (!len || len > MAX_ARG_STRLEN)
			return -EINVAL;
		p += len;
	}
	if (put_user(0, sp++))
		return -EFAULT;
	current->mm->arg_end = (unsigned long)p;

	current->mm->env_start = (unsigned long) p;
	for (i = bprm->envc; i > 0; i--) {
		if (put_user((unsigned long)p, sp++))
			return -EFAULT;
		len = strnlen_user(p, MAX_ARG_STRLEN);
		if (!len || len > MAX_ARG_STRLEN)
			return -EINVAL;
		p += len;
	}
	if (put_user(0, sp++))
		return -EFAULT;
	current->mm->env_end = (unsigned long)p;

	return 0;
}

/****************************************************************************/

#ifdef CONFIG_BINFMT_ZFLAT

#include <linux/zlib.h>

#define LBUFSIZE	4000

/* gzip flag byte */
#define ASCII_FLAG   0x01 /* bit 0 set: file probably ASCII text */
#define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
#define EXTRA_FIELD  0x04 /* bit 2 set: extra field present */
#define ORIG_NAME    0x08 /* bit 3 set: original file name present */
#define COMMENT      0x10 /* bit 4 set: file comment present */
#define ENCRYPTED    0x20 /* bit 5 set: file is encrypted */
#define RESERVED     0xC0 /* bit 6,7:   reserved */

static int decompress_exec(struct linux_binprm *bprm, loff_t fpos, char *dst,
		long len, int fd)
{
	unsigned char *buf;
	z_stream strm;
	int ret, retval;

	pr_debug("decompress_exec(offset=%llx,buf=%p,len=%lx)\n", fpos, dst, len);

	memset(&strm, 0, sizeof(strm));
	strm.workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
	if (!strm.workspace)
		return -ENOMEM;

	buf = kmalloc(LBUFSIZE, GFP_KERNEL);
	if (!buf) {
		retval = -ENOMEM;
		goto out_free;
	}

	/* Read in first chunk of data and parse gzip header. */
	ret = kernel_read(bprm->file, buf, LBUFSIZE, &fpos);

	strm.next_in = buf;
	strm.avail_in = ret;
	strm.total_in = 0;

	retval = -ENOEXEC;

	/* Check minimum size -- gzip header */
	if (ret < 10) {
		pr_debug("file too small?\n");
		goto out_free_buf;
	}

	/* Check gzip magic number */
	if ((buf[0] != 037) || ((buf[1] != 0213) && (buf[1] != 0236))) {
		pr_debug("unknown compression magic?\n");
		goto out_free_buf;
	}

	/* Check gzip method */
	if (buf[2] != 8) {
		pr_debug("unknown compression method?\n");
		goto out_free_buf;
	}
	/* Check gzip flags */
	if ((buf[3] & ENCRYPTED) || (buf[3] & CONTINUATION) ||
	    (buf[3] & RESERVED)) {
		pr_debug("unknown flags?\n");
		goto out_free_buf;
	}

	ret = 10;
	if (buf[3] & EXTRA_FIELD) {
		ret += 2 + buf[10] + (buf[11] << 8);
		if (unlikely(ret >= LBUFSIZE)) {
			pr_debug("buffer overflow (EXTRA)?\n");
			goto out_free_buf;
		}
	}
	if (buf[3] & ORIG_NAME) {
		while (ret < LBUFSIZE && buf[ret++] != 0)
			;
		if (unlikely(ret == LBUFSIZE)) {
			pr_debug("buffer overflow (ORIG_NAME)?\n");
			goto out_free_buf;
		}
	}
	if (buf[3] & COMMENT) {
		while (ret < LBUFSIZE && buf[ret++] != 0)
			;
		if (unlikely(ret == LBUFSIZE)) {
			pr_debug("buffer overflow (COMMENT)?\n");
			goto out_free_buf;
		}
	}

	strm.next_in += ret;
	strm.avail_in -= ret;

	strm.next_out = dst;
	strm.avail_out = len;
	strm.total_out = 0;

	if (zlib_inflateInit2(&strm, -MAX_WBITS) != Z_OK) {
		pr_debug("zlib init failed?\n");
		goto out_free_buf;
	}

	while ((ret = zlib_inflate(&strm, Z_NO_FLUSH)) == Z_OK) {
		ret = kernel_read(bprm->file, buf, LBUFSIZE, &fpos);
		if (ret <= 0)
			break;
		len -= ret;

		strm.next_in = buf;
		strm.avail_in = ret;
		strm.total_in = 0;
	}

	if (ret < 0) {
		pr_debug("decompression failed (%d), %s\n",
			ret, strm.msg);
		goto out_zlib;
	}

	retval = 0;
out_zlib:
	zlib_inflateEnd(&strm);
out_free_buf:
	kfree(buf);
out_free:
	kfree(strm.workspace);
	return retval;
}

#endif /* CONFIG_BINFMT_ZFLAT */

/****************************************************************************/

static unsigned long
calc_reloc(unsigned long r, struct lib_info *p)
{
	unsigned long addr;
	unsigned long start_brk;
	unsigned long start_data;
	unsigned long text_len;
	unsigned long start_code;

	start_brk = p->lib_list[0].start_brk;
	start_data = p->lib_list[0].start_data;
	start_code = p->lib_list[0].start_code;
	text_len = p->lib_list[0].text_len;

	if (r > start_brk - start_data + text_len) {
		pr_err("reloc outside program 0x%lx (0 - 0x%lx/0x%lx)",
		       r, start_brk-start_data+text_len, text_len);
		goto failed;
	}

	if (r < text_len)			/* In text segment */
		addr = r + start_code;
	else					/* In data segment */
		addr = r - text_len + start_data;

	/* Range checked already above so doing the range tests is redundant...*/
	return addr;

failed:
	pr_cont(", killing %s!\n", current->comm);
	send_sig(SIGSEGV, current, 0);

	return RELOC_FAILED;
}

/****************************************************************************/

#ifdef CONFIG_BINFMT_FLAT_OLD
static void old_reloc(unsigned long rl)
{
	static const char *segment[] = { "TEXT", "DATA", "BSS", "*UNKNOWN*" };
	flat_v2_reloc_t	r;
	unsigned long __user *ptr;
	unsigned long val;

	r.value = rl;
#if defined(CONFIG_COLDFIRE)
	ptr = (unsigned long __user *)(current->mm->start_code + r.reloc.offset);
#else
	ptr = (unsigned long __user *)(current->mm->start_data + r.reloc.offset);
#endif
	get_user(val, ptr);

	pr_debug("Relocation of variable at DATASEG+%x "
		 "(address %p, currently %lx) into segment %s\n",
		 r.reloc.offset, ptr, val, segment[r.reloc.type]);

	switch (r.reloc.type) {
	case OLD_FLAT_RELOC_TYPE_TEXT:
		val += current->mm->start_code;
		break;
	case OLD_FLAT_RELOC_TYPE_DATA:
		val += current->mm->start_data;
		break;
	case OLD_FLAT_RELOC_TYPE_BSS:
		val += current->mm->end_data;
		break;
	default:
		pr_err("Unknown relocation type=%x\n", r.reloc.type);
		break;
	}
	put_user(val, ptr);

	pr_debug("Relocation became %lx\n", val);
}
#endif /* CONFIG_BINFMT_FLAT_OLD */

/****************************************************************************/

static inline u32 __user *skip_got_header(u32 __user *rp)
{
	if (IS_ENABLED(CONFIG_RISCV)) {
		/*
		 * RISC-V has a 16 byte GOT PLT header for elf64-riscv
		 * and 8 byte GOT PLT header for elf32-riscv.
		 * Skip the whole GOT PLT header, since it is reserved
		 * for the dynamic linker (ld.so).
		 */
		u32 rp_val0, rp_val1;

		if (get_user(rp_val0, rp))
			return rp;
		if (get_user(rp_val1, rp + 1))
			return rp;

		if (rp_val0 == 0xffffffff && rp_val1 == 0xffffffff)
			rp += 4;
		else if (rp_val0 == 0xffffffff)
			rp += 2;
	}
	return rp;
}

static int load_flat_file(struct linux_binprm *bprm,
		struct lib_info *libinfo, unsigned long *extra_stack)
{
	struct flat_hdr *hdr;
	unsigned long textpos, datapos, realdatastart;
	u32 text_len, data_len, bss_len, stack_len, full_data, flags;
	unsigned long len, memp, memp_size, extra, rlim;
	__be32 __user *reloc;
	u32 __user *rp;
	int i, rev, relocs;
	loff_t fpos;
	unsigned long start_code, end_code;
	ssize_t result;
	int ret;

	hdr = ((struct flat_hdr *) bprm->buf);		/* exec-header */

	text_len  = ntohl(hdr->data_start);
	data_len  = ntohl(hdr->data_end) - ntohl(hdr->data_start);
	bss_len   = ntohl(hdr->bss_end) - ntohl(hdr->data_end);
	stack_len = ntohl(hdr->stack_size);
	if (extra_stack) {
		stack_len += *extra_stack;
		*extra_stack = stack_len;
	}
	relocs    = ntohl(hdr->reloc_count);
	flags     = ntohl(hdr->flags);
	rev       = ntohl(hdr->rev);
	full_data = data_len + relocs * sizeof(unsigned long);

	if (strncmp(hdr->magic, "bFLT", 4)) {
		/*
		 * Previously, here was a printk to tell people
		 *   "BINFMT_FLAT: bad header magic".
		 * But for the kernel which also use ELF FD-PIC format, this
		 * error message is confusing.
		 * because a lot of people do not manage to produce good
		 */
		ret = -ENOEXEC;
		goto err;
	}

	if (flags & FLAT_FLAG_KTRACE)
		pr_info("Loading file: %s\n", bprm->filename);

#ifdef CONFIG_BINFMT_FLAT_OLD
	if (rev != FLAT_VERSION && rev != OLD_FLAT_VERSION) {
		pr_err("bad flat file version 0x%x (supported 0x%lx and 0x%lx)\n",
		       rev, FLAT_VERSION, OLD_FLAT_VERSION);
		ret = -ENOEXEC;
		goto err;
	}

	/*
	 * fix up the flags for the older format,  there were all kinds
	 * of endian hacks,  this only works for the simple cases
	 */
	if (rev == OLD_FLAT_VERSION &&
	   (flags || IS_ENABLED(CONFIG_BINFMT_FLAT_OLD_ALWAYS_RAM)))
		flags = FLAT_FLAG_RAM;

#else /* CONFIG_BINFMT_FLAT_OLD */
	if (rev != FLAT_VERSION) {
		pr_err("bad flat file version 0x%x (supported 0x%lx)\n",
		       rev, FLAT_VERSION);
		ret = -ENOEXEC;
		goto err;
	}
#endif /* !CONFIG_BINFMT_FLAT_OLD */

	/*
	 * Make sure the header params are sane.
	 * 28 bits (256 MB) is way more than reasonable in this case.
	 * If some top bits are set we have probable binary corruption.
	*/
	if ((text_len | data_len | bss_len | stack_len | full_data) >> 28) {
		pr_err("bad header\n");
		ret = -ENOEXEC;
		goto err;
	}

#ifndef CONFIG_BINFMT_ZFLAT
	if (flags & (FLAT_FLAG_GZIP|FLAT_FLAG_GZDATA)) {
		pr_err("Support for ZFLAT executables is not enabled.\n");
		ret = -ENOEXEC;
		goto err;
	}
#endif

	/*
	 * Check initial limits. This avoids letting people circumvent
	 * size limits imposed on them by creating programs with large
	 * arrays in the data or bss.
	 */
	rlim = rlimit(RLIMIT_DATA);
	if (rlim >= RLIM_INFINITY)
		rlim = ~0;
	if (data_len + bss_len > rlim) {
		ret = -ENOMEM;
		goto err;
	}

	/* Flush all traces of the currently running executable */
	ret = begin_new_exec(bprm);
	if (ret)
		goto err;

	/* OK, This is the point of no return */
	set_personality(PER_LINUX_32BIT);
	setup_new_exec(bprm);

	/*
	 * calculate the extra space we need to map in
	 */
	extra = max_t(unsigned long, bss_len + stack_len,
			relocs * sizeof(unsigned long));

	/*
	 * there are a couple of cases here,  the separate code/data
	 * case,  and then the fully copied to RAM case which lumps
	 * it all together.
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !(flags & (FLAT_FLAG_RAM|FLAT_FLAG_GZIP))) {
		/*
		 * this should give us a ROM ptr,  but if it doesn't we don't
		 * really care
		 */
		pr_debug("ROM mapping of file (we hope)\n");

		textpos = vm_mmap(bprm->file, 0, text_len, PROT_READ|PROT_EXEC,
				  MAP_PRIVATE, 0);
		if (!textpos || IS_ERR_VALUE(textpos)) {
			ret = textpos;
			if (!textpos)
				ret = -ENOMEM;
			pr_err("Unable to mmap process text, errno %d\n", ret);
			goto err;
		}

		len = data_len + extra +
			DATA_START_OFFSET_WORDS * sizeof(unsigned long);
		len = PAGE_ALIGN(len);
		realdatastart = vm_mmap(NULL, 0, len,
			PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 0);

		if (realdatastart == 0 || IS_ERR_VALUE(realdatastart)) {
			ret = realdatastart;
			if (!realdatastart)
				ret = -ENOMEM;
			pr_err("Unable to allocate RAM for process data, "
			       "errno %d\n", ret);
			vm_munmap(textpos, text_len);
			goto err;
		}
		datapos = ALIGN(realdatastart +
				DATA_START_OFFSET_WORDS * sizeof(unsigned long),
				FLAT_DATA_ALIGN);

		pr_debug("Allocated data+bss+stack (%u bytes): %lx\n",
			 data_len + bss_len + stack_len, datapos);

		fpos = ntohl(hdr->data_start);
#ifdef CONFIG_BINFMT_ZFLAT
		if (flags & FLAT_FLAG_GZDATA) {
			result = decompress_exec(bprm, fpos, (char *)datapos,
						 full_data, 0);
		} else
#endif
		{
			result = read_code(bprm->file, datapos, fpos,
					full_data);
		}
		if (IS_ERR_VALUE(result)) {
			ret = result;
			pr_err("Unable to read data+bss, errno %d\n", ret);
			vm_munmap(textpos, text_len);
			vm_munmap(realdatastart, len);
			goto err;
		}

		reloc = (__be32 __user *)
			(datapos + (ntohl(hdr->reloc_start) - text_len));
		memp = realdatastart;
		memp_size = len;
	} else {

		len = text_len + data_len + extra +
			DATA_START_OFFSET_WORDS * sizeof(u32);
		len = PAGE_ALIGN(len);
		textpos = vm_mmap(NULL, 0, len,
			PROT_READ | PROT_EXEC | PROT_WRITE, MAP_PRIVATE, 0);

		if (!textpos || IS_ERR_VALUE(textpos)) {
			ret = textpos;
			if (!textpos)
				ret = -ENOMEM;
			pr_err("Unable to allocate RAM for process text/data, "
			       "errno %d\n", ret);
			goto err;
		}

		realdatastart = textpos + ntohl(hdr->data_start);
		datapos = ALIGN(realdatastart +
				DATA_START_OFFSET_WORDS * sizeof(u32),
				FLAT_DATA_ALIGN);

		reloc = (__be32 __user *)
			(datapos + (ntohl(hdr->reloc_start) - text_len));
		memp = textpos;
		memp_size = len;
#ifdef CONFIG_BINFMT_ZFLAT
		/*
		 * load it all in and treat it like a RAM load from now on
		 */
		if (flags & FLAT_FLAG_GZIP) {
#ifndef CONFIG_MMU
			result = decompress_exec(bprm, sizeof(struct flat_hdr),
					 (((char *)textpos) + sizeof(struct flat_hdr)),
					 (text_len + full_data
						  - sizeof(struct flat_hdr)),
					 0);
			memmove((void *) datapos, (void *) realdatastart,
					full_data);
#else
			/*
			 * This is used on MMU systems mainly for testing.
			 * Let's use a kernel buffer to simplify things.
			 */
			long unz_text_len = text_len - sizeof(struct flat_hdr);
			long unz_len = unz_text_len + full_data;
			char *unz_data = vmalloc(unz_len);
			if (!unz_data) {
				result = -ENOMEM;
			} else {
				result = decompress_exec(bprm, sizeof(struct flat_hdr),
							 unz_data, unz_len, 0);
				if (result == 0 &&
				    (copy_to_user((void __user *)textpos + sizeof(struct flat_hdr),
						  unz_data, unz_text_len) ||
				     copy_to_user((void __user *)datapos,
						  unz_data + unz_text_len, full_data)))
					result = -EFAULT;
				vfree(unz_data);
			}
#endif
		} else if (flags & FLAT_FLAG_GZDATA) {
			result = read_code(bprm->file, textpos, 0, text_len);
			if (!IS_ERR_VALUE(result)) {
#ifndef CONFIG_MMU
				result = decompress_exec(bprm, text_len, (char *) datapos,
						 full_data, 0);
#else
				char *unz_data = vmalloc(full_data);
				if (!unz_data) {
					result = -ENOMEM;
				} else {
					result = decompress_exec(bprm, text_len,
						       unz_data, full_data, 0);
					if (result == 0 &&
					    copy_to_user((void __user *)datapos,
							 unz_data, full_data))
						result = -EFAULT;
					vfree(unz_data);
				}
#endif
			}
		} else
#endif /* CONFIG_BINFMT_ZFLAT */
		{
			result = read_code(bprm->file, textpos, 0, text_len);
			if (!IS_ERR_VALUE(result))
				result = read_code(bprm->file, datapos,
						   ntohl(hdr->data_start),
						   full_data);
		}
		if (IS_ERR_VALUE(result)) {
			ret = result;
			pr_err("Unable to read code+data+bss, errno %d\n", ret);
			vm_munmap(textpos, text_len + data_len + extra +
				  DATA_START_OFFSET_WORDS * sizeof(u32));
			goto err;
		}
	}

	start_code = textpos + sizeof(struct flat_hdr);
	end_code = textpos + text_len;
	text_len -= sizeof(struct flat_hdr); /* the real code len */

	/* The main program needs a little extra setup in the task structure */
	current->mm->start_code = start_code;
	current->mm->end_code = end_code;
	current->mm->start_data = datapos;
	current->mm->end_data = datapos + data_len;
	/*
	 * set up the brk stuff, uses any slack left in data/bss/stack
	 * allocation.  We put the brk after the bss (between the bss
	 * and stack) like other platforms.
	 * Userspace code relies on the stack pointer starting out at
	 * an address right at the end of a page.
	 */
	current->mm->start_brk = datapos + data_len + bss_len;
	current->mm->brk = (current->mm->start_brk + 3) & ~3;
#ifndef CONFIG_MMU
	current->mm->context.end_brk = memp + memp_size - stack_len;
#endif

	if (flags & FLAT_FLAG_KTRACE) {
		pr_info("Mapping is %lx, Entry point is %x, data_start is %x\n",
			textpos, 0x00ffffff&ntohl(hdr->entry), ntohl(hdr->data_start));
		pr_info("%s %s: TEXT=%lx-%lx DATA=%lx-%lx BSS=%lx-%lx\n",
			"Load", bprm->filename,
			start_code, end_code, datapos, datapos + data_len,
			datapos + data_len, (datapos + data_len + bss_len + 3) & ~3);
	}

	/* Store the current module values into the global library structure */
	libinfo->lib_list[0].start_code = start_code;
	libinfo->lib_list[0].start_data = datapos;
	libinfo->lib_list[0].start_brk = datapos + data_len + bss_len;
	libinfo->lib_list[0].text_len = text_len;
	libinfo->lib_list[0].loaded = 1;
	libinfo->lib_list[0].entry = (0x00ffffff & ntohl(hdr->entry)) + textpos;
	libinfo->lib_list[0].build_date = ntohl(hdr->build_date);

	/*
	 * We just load the allocations into some temporary memory to
	 * help simplify all this mumbo jumbo
	 *
	 * We've got two different sections of relocation entries.
	 * The first is the GOT which resides at the beginning of the data segment
	 * and is terminated with a -1.  This one can be relocated in place.
	 * The second is the extra relocation entries tacked after the image's
	 * data segment. These require a little more processing as the entry is
	 * really an offset into the image which contains an offset into the
	 * image.
	 */
	if (flags & FLAT_FLAG_GOTPIC) {
		rp = skip_got_header((u32 __user *) datapos);
		for (; ; rp++) {
			u32 addr, rp_val;
			if (get_user(rp_val, rp))
				return -EFAULT;
			if (rp_val == 0xffffffff)
				break;
			if (rp_val) {
				addr = calc_reloc(rp_val, libinfo);
				if (addr == RELOC_FAILED) {
					ret = -ENOEXEC;
					goto err;
				}
				if (put_user(addr, rp))
					return -EFAULT;
			}
		}
	}

	/*
	 * Now run through the relocation entries.
	 * We've got to be careful here as C++ produces relocatable zero
	 * entries in the constructor and destructor tables which are then
	 * tested for being not zero (which will always occur unless we're
	 * based from address zero).  This causes an endless loop as __start
	 * is at zero.  The solution used is to not relocate zero addresses.
	 * This has the negative side effect of not allowing a global data
	 * reference to be statically initialised to _stext (I've moved
	 * __start to address 4 so that is okay).
	 */
	if (rev > OLD_FLAT_VERSION) {
		for (i = 0; i < relocs; i++) {
			u32 addr, relval;
			__be32 tmp;

			/*
			 * Get the address of the pointer to be
			 * relocated (of course, the address has to be
			 * relocated first).
			 */
			if (get_user(tmp, reloc + i))
				return -EFAULT;
			relval = ntohl(tmp);
			addr = flat_get_relocate_addr(relval);
			rp = (u32 __user *)calc_reloc(addr, libinfo);
			if (rp == (u32 __user *)RELOC_FAILED) {
				ret = -ENOEXEC;
				goto err;
			}

			/* Get the pointer's value.  */
			ret = flat_get_addr_from_rp(rp, relval, flags, &addr);
			if (unlikely(ret))
				goto err;

			if (addr != 0) {
				/*
				 * Do the relocation.  PIC relocs in the data section are
				 * already in target order
				 */
				if ((flags & FLAT_FLAG_GOTPIC) == 0) {
					/*
					 * Meh, the same value can have a different
					 * byte order based on a flag..
					 */
					addr = ntohl((__force __be32)addr);
				}
				addr = calc_reloc(addr, libinfo);
				if (addr == RELOC_FAILED) {
					ret = -ENOEXEC;
					goto err;
				}

				/* Write back the relocated pointer.  */
				ret = flat_put_addr_at_rp(rp, addr, relval);
				if (unlikely(ret))
					goto err;
			}
		}
#ifdef CONFIG_BINFMT_FLAT_OLD
	} else {
		for (i = 0; i < relocs; i++) {
			__be32 relval;
			if (get_user(relval, reloc + i))
				return -EFAULT;
			old_reloc(ntohl(relval));
		}
#endif /* CONFIG_BINFMT_FLAT_OLD */
	}

	flush_icache_user_range(start_code, end_code);

	/* zero the BSS,  BRK and stack areas */
	if (clear_user((void __user *)(datapos + data_len), bss_len +
		       (memp + memp_size - stack_len -		/* end brk */
		       libinfo->lib_list[0].start_brk) +	/* start brk */
		       stack_len))
		return -EFAULT;

	return 0;
err:
	return ret;
}


/****************************************************************************/

/*
 * These are the functions used to load flat style executables and shared
 * libraries.  There is no binary dependent code anywhere else.
 */

static int load_flat_binary(struct linux_binprm *bprm)
{
	struct lib_info libinfo;
	struct pt_regs *regs = current_pt_regs();
	unsigned long stack_len = 0;
	unsigned long start_addr;
	int res;
	int i, j;

	memset(&libinfo, 0, sizeof(libinfo));

	/*
	 * We have to add the size of our arguments to our stack size
	 * otherwise it's too easy for users to create stack overflows
	 * by passing in a huge argument list.  And yes,  we have to be
	 * pedantic and include space for the argv/envp array as it may have
	 * a lot of entries.
	 */
#ifndef CONFIG_MMU
	stack_len += PAGE_SIZE * MAX_ARG_PAGES - bprm->p; /* the strings */
#endif
	stack_len += (bprm->argc + 1) * sizeof(char *);   /* the argv array */
	stack_len += (bprm->envc + 1) * sizeof(char *);   /* the envp array */
	stack_len = ALIGN(stack_len, FLAT_STACK_ALIGN);

	res = load_flat_file(bprm, &libinfo, &stack_len);
	if (res < 0)
		return res;

	/* Update data segment pointers for all libraries */
	for (i = 0; i < MAX_SHARED_LIBS; i++) {
		if (!libinfo.lib_list[i].loaded)
			continue;
		for (j = 0; j < MAX_SHARED_LIBS; j++) {
			unsigned long val = libinfo.lib_list[j].loaded ?
				libinfo.lib_list[j].start_data : UNLOADED_LIB;
			unsigned long __user *p = (unsigned long __user *)
				libinfo.lib_list[i].start_data;
			p -= j + 1;
			if (put_user(val, p))
				return -EFAULT;
		}
	}

	set_binfmt(&flat_format);

#ifdef CONFIG_MMU
	res = setup_arg_pages(bprm, STACK_TOP, EXSTACK_DEFAULT);
	if (!res)
		res = create_flat_tables(bprm, bprm->p);
#else
	/* Stash our initial stack pointer into the mm structure */
	current->mm->start_stack =
		((current->mm->context.end_brk + stack_len + 3) & ~3) - 4;
	pr_debug("sp=%lx\n", current->mm->start_stack);

	/* copy the arg pages onto the stack */
	res = transfer_args_to_stack(bprm, &current->mm->start_stack);
	if (!res)
		res = create_flat_tables(bprm, current->mm->start_stack);
#endif
	if (res)
		return res;

	/* Fake some return addresses to ensure the call chain will
	 * initialise library in order for us.  We are required to call
	 * lib 1 first, then 2, ... and finally the main program (id 0).
	 */
	start_addr = libinfo.lib_list[0].entry;

#ifdef FLAT_PLAT_INIT
	FLAT_PLAT_INIT(regs);
#endif

	finalize_exec(bprm);
	pr_debug("start_thread(regs=0x%p, entry=0x%lx, start_stack=0x%lx)\n",
		 regs, start_addr, current->mm->start_stack);
	start_thread(regs, start_addr, current->mm->start_stack);

	return 0;
}

/****************************************************************************/

static int __init init_flat_binfmt(void)
{
	register_binfmt(&flat_format);
	return 0;
}
core_initcall(init_flat_binfmt);

/****************************************************************************/
back to top