https://github.com/torvalds/linux
Revision a4412fdd49dc011bcc2c0d81ac4cab7457092650 authored by Steven Rostedt (Google) on 21 November 2022, 15:44:03 UTC, committed by Linus Torvalds on 01 December 2022, 21:14:21 UTC
The config to be able to inject error codes into any function annotated
with ALLOW_ERROR_INJECTION() is enabled when FUNCTION_ERROR_INJECTION is
enabled.  But unfortunately, this is always enabled on x86 when KPROBES
is enabled, and there's no way to turn it off.

As kprobes is useful for observability of the kernel, it is useful to
have it enabled in production environments.  But error injection should
be avoided.  Add a prompt to the config to allow it to be disabled even
when kprobes is enabled, and get rid of the "def_bool y".

This is a kernel debug feature (it's in Kconfig.debug), and should have
never been something enabled by default.

Cc: stable@vger.kernel.org
Fixes: 540adea3809f6 ("error-injection: Separate error-injection from kprobe")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1 parent 355479c
Raw File
Tip revision: a4412fdd49dc011bcc2c0d81ac4cab7457092650 authored by Steven Rostedt (Google) on 21 November 2022, 15:44:03 UTC
error-injection: Add prompt for function error injection
Tip revision: a4412fd
super.c
// SPDX-License-Identifier: GPL-2.0
/*
 *  linux/fs/super.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  super.c contains code to handle: - mount structures
 *                                   - super-block tables
 *                                   - filesystem drivers list
 *                                   - mount system call
 *                                   - umount system call
 *                                   - ustat system call
 *
 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
 *
 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
 *  Added options to /proc/mounts:
 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
 */

#include <linux/export.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/writeback.h>		/* for the emergency remount stuff */
#include <linux/idr.h>
#include <linux/mutex.h>
#include <linux/backing-dev.h>
#include <linux/rculist_bl.h>
#include <linux/fscrypt.h>
#include <linux/fsnotify.h>
#include <linux/lockdep.h>
#include <linux/user_namespace.h>
#include <linux/fs_context.h>
#include <uapi/linux/mount.h>
#include "internal.h"

static int thaw_super_locked(struct super_block *sb);

static LIST_HEAD(super_blocks);
static DEFINE_SPINLOCK(sb_lock);

static char *sb_writers_name[SB_FREEZE_LEVELS] = {
	"sb_writers",
	"sb_pagefaults",
	"sb_internal",
};

/*
 * One thing we have to be careful of with a per-sb shrinker is that we don't
 * drop the last active reference to the superblock from within the shrinker.
 * If that happens we could trigger unregistering the shrinker from within the
 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
 * take a passive reference to the superblock to avoid this from occurring.
 */
static unsigned long super_cache_scan(struct shrinker *shrink,
				      struct shrink_control *sc)
{
	struct super_block *sb;
	long	fs_objects = 0;
	long	total_objects;
	long	freed = 0;
	long	dentries;
	long	inodes;

	sb = container_of(shrink, struct super_block, s_shrink);

	/*
	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
	 * to recurse into the FS that called us in clear_inode() and friends..
	 */
	if (!(sc->gfp_mask & __GFP_FS))
		return SHRINK_STOP;

	if (!trylock_super(sb))
		return SHRINK_STOP;

	if (sb->s_op->nr_cached_objects)
		fs_objects = sb->s_op->nr_cached_objects(sb, sc);

	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
	total_objects = dentries + inodes + fs_objects + 1;
	if (!total_objects)
		total_objects = 1;

	/* proportion the scan between the caches */
	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);

	/*
	 * prune the dcache first as the icache is pinned by it, then
	 * prune the icache, followed by the filesystem specific caches
	 *
	 * Ensure that we always scan at least one object - memcg kmem
	 * accounting uses this to fully empty the caches.
	 */
	sc->nr_to_scan = dentries + 1;
	freed = prune_dcache_sb(sb, sc);
	sc->nr_to_scan = inodes + 1;
	freed += prune_icache_sb(sb, sc);

	if (fs_objects) {
		sc->nr_to_scan = fs_objects + 1;
		freed += sb->s_op->free_cached_objects(sb, sc);
	}

	up_read(&sb->s_umount);
	return freed;
}

static unsigned long super_cache_count(struct shrinker *shrink,
				       struct shrink_control *sc)
{
	struct super_block *sb;
	long	total_objects = 0;

	sb = container_of(shrink, struct super_block, s_shrink);

	/*
	 * We don't call trylock_super() here as it is a scalability bottleneck,
	 * so we're exposed to partial setup state. The shrinker rwsem does not
	 * protect filesystem operations backing list_lru_shrink_count() or
	 * s_op->nr_cached_objects(). Counts can change between
	 * super_cache_count and super_cache_scan, so we really don't need locks
	 * here.
	 *
	 * However, if we are currently mounting the superblock, the underlying
	 * filesystem might be in a state of partial construction and hence it
	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
	 * avoid this situation, so do the same here. The memory barrier is
	 * matched with the one in mount_fs() as we don't hold locks here.
	 */
	if (!(sb->s_flags & SB_BORN))
		return 0;
	smp_rmb();

	if (sb->s_op && sb->s_op->nr_cached_objects)
		total_objects = sb->s_op->nr_cached_objects(sb, sc);

	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);

	if (!total_objects)
		return SHRINK_EMPTY;

	total_objects = vfs_pressure_ratio(total_objects);
	return total_objects;
}

static void destroy_super_work(struct work_struct *work)
{
	struct super_block *s = container_of(work, struct super_block,
							destroy_work);
	int i;

	for (i = 0; i < SB_FREEZE_LEVELS; i++)
		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
	kfree(s);
}

static void destroy_super_rcu(struct rcu_head *head)
{
	struct super_block *s = container_of(head, struct super_block, rcu);
	INIT_WORK(&s->destroy_work, destroy_super_work);
	schedule_work(&s->destroy_work);
}

/* Free a superblock that has never been seen by anyone */
static void destroy_unused_super(struct super_block *s)
{
	if (!s)
		return;
	up_write(&s->s_umount);
	list_lru_destroy(&s->s_dentry_lru);
	list_lru_destroy(&s->s_inode_lru);
	security_sb_free(s);
	put_user_ns(s->s_user_ns);
	kfree(s->s_subtype);
	free_prealloced_shrinker(&s->s_shrink);
	/* no delays needed */
	destroy_super_work(&s->destroy_work);
}

/**
 *	alloc_super	-	create new superblock
 *	@type:	filesystem type superblock should belong to
 *	@flags: the mount flags
 *	@user_ns: User namespace for the super_block
 *
 *	Allocates and initializes a new &struct super_block.  alloc_super()
 *	returns a pointer new superblock or %NULL if allocation had failed.
 */
static struct super_block *alloc_super(struct file_system_type *type, int flags,
				       struct user_namespace *user_ns)
{
	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
	static const struct super_operations default_op;
	int i;

	if (!s)
		return NULL;

	INIT_LIST_HEAD(&s->s_mounts);
	s->s_user_ns = get_user_ns(user_ns);
	init_rwsem(&s->s_umount);
	lockdep_set_class(&s->s_umount, &type->s_umount_key);
	/*
	 * sget() can have s_umount recursion.
	 *
	 * When it cannot find a suitable sb, it allocates a new
	 * one (this one), and tries again to find a suitable old
	 * one.
	 *
	 * In case that succeeds, it will acquire the s_umount
	 * lock of the old one. Since these are clearly distrinct
	 * locks, and this object isn't exposed yet, there's no
	 * risk of deadlocks.
	 *
	 * Annotate this by putting this lock in a different
	 * subclass.
	 */
	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);

	if (security_sb_alloc(s))
		goto fail;

	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
					sb_writers_name[i],
					&type->s_writers_key[i]))
			goto fail;
	}
	init_waitqueue_head(&s->s_writers.wait_unfrozen);
	s->s_bdi = &noop_backing_dev_info;
	s->s_flags = flags;
	if (s->s_user_ns != &init_user_ns)
		s->s_iflags |= SB_I_NODEV;
	INIT_HLIST_NODE(&s->s_instances);
	INIT_HLIST_BL_HEAD(&s->s_roots);
	mutex_init(&s->s_sync_lock);
	INIT_LIST_HEAD(&s->s_inodes);
	spin_lock_init(&s->s_inode_list_lock);
	INIT_LIST_HEAD(&s->s_inodes_wb);
	spin_lock_init(&s->s_inode_wblist_lock);

	s->s_count = 1;
	atomic_set(&s->s_active, 1);
	mutex_init(&s->s_vfs_rename_mutex);
	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
	init_rwsem(&s->s_dquot.dqio_sem);
	s->s_maxbytes = MAX_NON_LFS;
	s->s_op = &default_op;
	s->s_time_gran = 1000000000;
	s->s_time_min = TIME64_MIN;
	s->s_time_max = TIME64_MAX;

	s->s_shrink.seeks = DEFAULT_SEEKS;
	s->s_shrink.scan_objects = super_cache_scan;
	s->s_shrink.count_objects = super_cache_count;
	s->s_shrink.batch = 1024;
	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
	if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
		goto fail;
	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
		goto fail;
	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
		goto fail;
	return s;

fail:
	destroy_unused_super(s);
	return NULL;
}

/* Superblock refcounting  */

/*
 * Drop a superblock's refcount.  The caller must hold sb_lock.
 */
static void __put_super(struct super_block *s)
{
	if (!--s->s_count) {
		list_del_init(&s->s_list);
		WARN_ON(s->s_dentry_lru.node);
		WARN_ON(s->s_inode_lru.node);
		WARN_ON(!list_empty(&s->s_mounts));
		security_sb_free(s);
		fscrypt_destroy_keyring(s);
		put_user_ns(s->s_user_ns);
		kfree(s->s_subtype);
		call_rcu(&s->rcu, destroy_super_rcu);
	}
}

/**
 *	put_super	-	drop a temporary reference to superblock
 *	@sb: superblock in question
 *
 *	Drops a temporary reference, frees superblock if there's no
 *	references left.
 */
void put_super(struct super_block *sb)
{
	spin_lock(&sb_lock);
	__put_super(sb);
	spin_unlock(&sb_lock);
}


/**
 *	deactivate_locked_super	-	drop an active reference to superblock
 *	@s: superblock to deactivate
 *
 *	Drops an active reference to superblock, converting it into a temporary
 *	one if there is no other active references left.  In that case we
 *	tell fs driver to shut it down and drop the temporary reference we
 *	had just acquired.
 *
 *	Caller holds exclusive lock on superblock; that lock is released.
 */
void deactivate_locked_super(struct super_block *s)
{
	struct file_system_type *fs = s->s_type;
	if (atomic_dec_and_test(&s->s_active)) {
		unregister_shrinker(&s->s_shrink);
		fs->kill_sb(s);

		/*
		 * Since list_lru_destroy() may sleep, we cannot call it from
		 * put_super(), where we hold the sb_lock. Therefore we destroy
		 * the lru lists right now.
		 */
		list_lru_destroy(&s->s_dentry_lru);
		list_lru_destroy(&s->s_inode_lru);

		put_filesystem(fs);
		put_super(s);
	} else {
		up_write(&s->s_umount);
	}
}

EXPORT_SYMBOL(deactivate_locked_super);

/**
 *	deactivate_super	-	drop an active reference to superblock
 *	@s: superblock to deactivate
 *
 *	Variant of deactivate_locked_super(), except that superblock is *not*
 *	locked by caller.  If we are going to drop the final active reference,
 *	lock will be acquired prior to that.
 */
void deactivate_super(struct super_block *s)
{
	if (!atomic_add_unless(&s->s_active, -1, 1)) {
		down_write(&s->s_umount);
		deactivate_locked_super(s);
	}
}

EXPORT_SYMBOL(deactivate_super);

/**
 *	grab_super - acquire an active reference
 *	@s: reference we are trying to make active
 *
 *	Tries to acquire an active reference.  grab_super() is used when we
 * 	had just found a superblock in super_blocks or fs_type->fs_supers
 *	and want to turn it into a full-blown active reference.  grab_super()
 *	is called with sb_lock held and drops it.  Returns 1 in case of
 *	success, 0 if we had failed (superblock contents was already dead or
 *	dying when grab_super() had been called).  Note that this is only
 *	called for superblocks not in rundown mode (== ones still on ->fs_supers
 *	of their type), so increment of ->s_count is OK here.
 */
static int grab_super(struct super_block *s) __releases(sb_lock)
{
	s->s_count++;
	spin_unlock(&sb_lock);
	down_write(&s->s_umount);
	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
		put_super(s);
		return 1;
	}
	up_write(&s->s_umount);
	put_super(s);
	return 0;
}

/*
 *	trylock_super - try to grab ->s_umount shared
 *	@sb: reference we are trying to grab
 *
 *	Try to prevent fs shutdown.  This is used in places where we
 *	cannot take an active reference but we need to ensure that the
 *	filesystem is not shut down while we are working on it. It returns
 *	false if we cannot acquire s_umount or if we lose the race and
 *	filesystem already got into shutdown, and returns true with the s_umount
 *	lock held in read mode in case of success. On successful return,
 *	the caller must drop the s_umount lock when done.
 *
 *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 *	The reason why it's safe is that we are OK with doing trylock instead
 *	of down_read().  There's a couple of places that are OK with that, but
 *	it's very much not a general-purpose interface.
 */
bool trylock_super(struct super_block *sb)
{
	if (down_read_trylock(&sb->s_umount)) {
		if (!hlist_unhashed(&sb->s_instances) &&
		    sb->s_root && (sb->s_flags & SB_BORN))
			return true;
		up_read(&sb->s_umount);
	}

	return false;
}

/**
 *	retire_super	-	prevents superblock from being reused
 *	@sb: superblock to retire
 *
 *	The function marks superblock to be ignored in superblock test, which
 *	prevents it from being reused for any new mounts.  If the superblock has
 *	a private bdi, it also unregisters it, but doesn't reduce the refcount
 *	of the superblock to prevent potential races.  The refcount is reduced
 *	by generic_shutdown_super().  The function can not be called
 *	concurrently with generic_shutdown_super().  It is safe to call the
 *	function multiple times, subsequent calls have no effect.
 *
 *	The marker will affect the re-use only for block-device-based
 *	superblocks.  Other superblocks will still get marked if this function
 *	is used, but that will not affect their reusability.
 */
void retire_super(struct super_block *sb)
{
	WARN_ON(!sb->s_bdev);
	down_write(&sb->s_umount);
	if (sb->s_iflags & SB_I_PERSB_BDI) {
		bdi_unregister(sb->s_bdi);
		sb->s_iflags &= ~SB_I_PERSB_BDI;
	}
	sb->s_iflags |= SB_I_RETIRED;
	up_write(&sb->s_umount);
}
EXPORT_SYMBOL(retire_super);

/**
 *	generic_shutdown_super	-	common helper for ->kill_sb()
 *	@sb: superblock to kill
 *
 *	generic_shutdown_super() does all fs-independent work on superblock
 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 *	that need destruction out of superblock, call generic_shutdown_super()
 *	and release aforementioned objects.  Note: dentries and inodes _are_
 *	taken care of and do not need specific handling.
 *
 *	Upon calling this function, the filesystem may no longer alter or
 *	rearrange the set of dentries belonging to this super_block, nor may it
 *	change the attachments of dentries to inodes.
 */
void generic_shutdown_super(struct super_block *sb)
{
	const struct super_operations *sop = sb->s_op;

	if (sb->s_root) {
		shrink_dcache_for_umount(sb);
		sync_filesystem(sb);
		sb->s_flags &= ~SB_ACTIVE;

		cgroup_writeback_umount();

		/* evict all inodes with zero refcount */
		evict_inodes(sb);
		/* only nonzero refcount inodes can have marks */
		fsnotify_sb_delete(sb);
		fscrypt_destroy_keyring(sb);
		security_sb_delete(sb);

		if (sb->s_dio_done_wq) {
			destroy_workqueue(sb->s_dio_done_wq);
			sb->s_dio_done_wq = NULL;
		}

		if (sop->put_super)
			sop->put_super(sb);

		if (!list_empty(&sb->s_inodes)) {
			printk("VFS: Busy inodes after unmount of %s. "
			   "Self-destruct in 5 seconds.  Have a nice day...\n",
			   sb->s_id);
		}
	}
	spin_lock(&sb_lock);
	/* should be initialized for __put_super_and_need_restart() */
	hlist_del_init(&sb->s_instances);
	spin_unlock(&sb_lock);
	up_write(&sb->s_umount);
	if (sb->s_bdi != &noop_backing_dev_info) {
		if (sb->s_iflags & SB_I_PERSB_BDI)
			bdi_unregister(sb->s_bdi);
		bdi_put(sb->s_bdi);
		sb->s_bdi = &noop_backing_dev_info;
	}
}

EXPORT_SYMBOL(generic_shutdown_super);

bool mount_capable(struct fs_context *fc)
{
	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
		return capable(CAP_SYS_ADMIN);
	else
		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
}

/**
 * sget_fc - Find or create a superblock
 * @fc:	Filesystem context.
 * @test: Comparison callback
 * @set: Setup callback
 *
 * Find or create a superblock using the parameters stored in the filesystem
 * context and the two callback functions.
 *
 * If an extant superblock is matched, then that will be returned with an
 * elevated reference count that the caller must transfer or discard.
 *
 * If no match is made, a new superblock will be allocated and basic
 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
 * the set() callback will be invoked), the superblock will be published and it
 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
 * as yet unset.
 */
struct super_block *sget_fc(struct fs_context *fc,
			    int (*test)(struct super_block *, struct fs_context *),
			    int (*set)(struct super_block *, struct fs_context *))
{
	struct super_block *s = NULL;
	struct super_block *old;
	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
	int err;

retry:
	spin_lock(&sb_lock);
	if (test) {
		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
			if (test(old, fc))
				goto share_extant_sb;
		}
	}
	if (!s) {
		spin_unlock(&sb_lock);
		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
		if (!s)
			return ERR_PTR(-ENOMEM);
		goto retry;
	}

	s->s_fs_info = fc->s_fs_info;
	err = set(s, fc);
	if (err) {
		s->s_fs_info = NULL;
		spin_unlock(&sb_lock);
		destroy_unused_super(s);
		return ERR_PTR(err);
	}
	fc->s_fs_info = NULL;
	s->s_type = fc->fs_type;
	s->s_iflags |= fc->s_iflags;
	strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
	list_add_tail(&s->s_list, &super_blocks);
	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
	spin_unlock(&sb_lock);
	get_filesystem(s->s_type);
	register_shrinker_prepared(&s->s_shrink);
	return s;

share_extant_sb:
	if (user_ns != old->s_user_ns) {
		spin_unlock(&sb_lock);
		destroy_unused_super(s);
		return ERR_PTR(-EBUSY);
	}
	if (!grab_super(old))
		goto retry;
	destroy_unused_super(s);
	return old;
}
EXPORT_SYMBOL(sget_fc);

/**
 *	sget	-	find or create a superblock
 *	@type:	  filesystem type superblock should belong to
 *	@test:	  comparison callback
 *	@set:	  setup callback
 *	@flags:	  mount flags
 *	@data:	  argument to each of them
 */
struct super_block *sget(struct file_system_type *type,
			int (*test)(struct super_block *,void *),
			int (*set)(struct super_block *,void *),
			int flags,
			void *data)
{
	struct user_namespace *user_ns = current_user_ns();
	struct super_block *s = NULL;
	struct super_block *old;
	int err;

	/* We don't yet pass the user namespace of the parent
	 * mount through to here so always use &init_user_ns
	 * until that changes.
	 */
	if (flags & SB_SUBMOUNT)
		user_ns = &init_user_ns;

retry:
	spin_lock(&sb_lock);
	if (test) {
		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
			if (!test(old, data))
				continue;
			if (user_ns != old->s_user_ns) {
				spin_unlock(&sb_lock);
				destroy_unused_super(s);
				return ERR_PTR(-EBUSY);
			}
			if (!grab_super(old))
				goto retry;
			destroy_unused_super(s);
			return old;
		}
	}
	if (!s) {
		spin_unlock(&sb_lock);
		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
		if (!s)
			return ERR_PTR(-ENOMEM);
		goto retry;
	}

	err = set(s, data);
	if (err) {
		spin_unlock(&sb_lock);
		destroy_unused_super(s);
		return ERR_PTR(err);
	}
	s->s_type = type;
	strlcpy(s->s_id, type->name, sizeof(s->s_id));
	list_add_tail(&s->s_list, &super_blocks);
	hlist_add_head(&s->s_instances, &type->fs_supers);
	spin_unlock(&sb_lock);
	get_filesystem(type);
	register_shrinker_prepared(&s->s_shrink);
	return s;
}
EXPORT_SYMBOL(sget);

void drop_super(struct super_block *sb)
{
	up_read(&sb->s_umount);
	put_super(sb);
}

EXPORT_SYMBOL(drop_super);

void drop_super_exclusive(struct super_block *sb)
{
	up_write(&sb->s_umount);
	put_super(sb);
}
EXPORT_SYMBOL(drop_super_exclusive);

static void __iterate_supers(void (*f)(struct super_block *))
{
	struct super_block *sb, *p = NULL;

	spin_lock(&sb_lock);
	list_for_each_entry(sb, &super_blocks, s_list) {
		if (hlist_unhashed(&sb->s_instances))
			continue;
		sb->s_count++;
		spin_unlock(&sb_lock);

		f(sb);

		spin_lock(&sb_lock);
		if (p)
			__put_super(p);
		p = sb;
	}
	if (p)
		__put_super(p);
	spin_unlock(&sb_lock);
}
/**
 *	iterate_supers - call function for all active superblocks
 *	@f: function to call
 *	@arg: argument to pass to it
 *
 *	Scans the superblock list and calls given function, passing it
 *	locked superblock and given argument.
 */
void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
{
	struct super_block *sb, *p = NULL;

	spin_lock(&sb_lock);
	list_for_each_entry(sb, &super_blocks, s_list) {
		if (hlist_unhashed(&sb->s_instances))
			continue;
		sb->s_count++;
		spin_unlock(&sb_lock);

		down_read(&sb->s_umount);
		if (sb->s_root && (sb->s_flags & SB_BORN))
			f(sb, arg);
		up_read(&sb->s_umount);

		spin_lock(&sb_lock);
		if (p)
			__put_super(p);
		p = sb;
	}
	if (p)
		__put_super(p);
	spin_unlock(&sb_lock);
}

/**
 *	iterate_supers_type - call function for superblocks of given type
 *	@type: fs type
 *	@f: function to call
 *	@arg: argument to pass to it
 *
 *	Scans the superblock list and calls given function, passing it
 *	locked superblock and given argument.
 */
void iterate_supers_type(struct file_system_type *type,
	void (*f)(struct super_block *, void *), void *arg)
{
	struct super_block *sb, *p = NULL;

	spin_lock(&sb_lock);
	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
		sb->s_count++;
		spin_unlock(&sb_lock);

		down_read(&sb->s_umount);
		if (sb->s_root && (sb->s_flags & SB_BORN))
			f(sb, arg);
		up_read(&sb->s_umount);

		spin_lock(&sb_lock);
		if (p)
			__put_super(p);
		p = sb;
	}
	if (p)
		__put_super(p);
	spin_unlock(&sb_lock);
}

EXPORT_SYMBOL(iterate_supers_type);

/**
 * get_super - get the superblock of a device
 * @bdev: device to get the superblock for
 *
 * Scans the superblock list and finds the superblock of the file system
 * mounted on the device given. %NULL is returned if no match is found.
 */
struct super_block *get_super(struct block_device *bdev)
{
	struct super_block *sb;

	if (!bdev)
		return NULL;

	spin_lock(&sb_lock);
rescan:
	list_for_each_entry(sb, &super_blocks, s_list) {
		if (hlist_unhashed(&sb->s_instances))
			continue;
		if (sb->s_bdev == bdev) {
			sb->s_count++;
			spin_unlock(&sb_lock);
			down_read(&sb->s_umount);
			/* still alive? */
			if (sb->s_root && (sb->s_flags & SB_BORN))
				return sb;
			up_read(&sb->s_umount);
			/* nope, got unmounted */
			spin_lock(&sb_lock);
			__put_super(sb);
			goto rescan;
		}
	}
	spin_unlock(&sb_lock);
	return NULL;
}

/**
 * get_active_super - get an active reference to the superblock of a device
 * @bdev: device to get the superblock for
 *
 * Scans the superblock list and finds the superblock of the file system
 * mounted on the device given.  Returns the superblock with an active
 * reference or %NULL if none was found.
 */
struct super_block *get_active_super(struct block_device *bdev)
{
	struct super_block *sb;

	if (!bdev)
		return NULL;

restart:
	spin_lock(&sb_lock);
	list_for_each_entry(sb, &super_blocks, s_list) {
		if (hlist_unhashed(&sb->s_instances))
			continue;
		if (sb->s_bdev == bdev) {
			if (!grab_super(sb))
				goto restart;
			up_write(&sb->s_umount);
			return sb;
		}
	}
	spin_unlock(&sb_lock);
	return NULL;
}

struct super_block *user_get_super(dev_t dev, bool excl)
{
	struct super_block *sb;

	spin_lock(&sb_lock);
rescan:
	list_for_each_entry(sb, &super_blocks, s_list) {
		if (hlist_unhashed(&sb->s_instances))
			continue;
		if (sb->s_dev ==  dev) {
			sb->s_count++;
			spin_unlock(&sb_lock);
			if (excl)
				down_write(&sb->s_umount);
			else
				down_read(&sb->s_umount);
			/* still alive? */
			if (sb->s_root && (sb->s_flags & SB_BORN))
				return sb;
			if (excl)
				up_write(&sb->s_umount);
			else
				up_read(&sb->s_umount);
			/* nope, got unmounted */
			spin_lock(&sb_lock);
			__put_super(sb);
			goto rescan;
		}
	}
	spin_unlock(&sb_lock);
	return NULL;
}

/**
 * reconfigure_super - asks filesystem to change superblock parameters
 * @fc: The superblock and configuration
 *
 * Alters the configuration parameters of a live superblock.
 */
int reconfigure_super(struct fs_context *fc)
{
	struct super_block *sb = fc->root->d_sb;
	int retval;
	bool remount_ro = false;
	bool force = fc->sb_flags & SB_FORCE;

	if (fc->sb_flags_mask & ~MS_RMT_MASK)
		return -EINVAL;
	if (sb->s_writers.frozen != SB_UNFROZEN)
		return -EBUSY;

	retval = security_sb_remount(sb, fc->security);
	if (retval)
		return retval;

	if (fc->sb_flags_mask & SB_RDONLY) {
#ifdef CONFIG_BLOCK
		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
		    bdev_read_only(sb->s_bdev))
			return -EACCES;
#endif

		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
	}

	if (remount_ro) {
		if (!hlist_empty(&sb->s_pins)) {
			up_write(&sb->s_umount);
			group_pin_kill(&sb->s_pins);
			down_write(&sb->s_umount);
			if (!sb->s_root)
				return 0;
			if (sb->s_writers.frozen != SB_UNFROZEN)
				return -EBUSY;
			remount_ro = !sb_rdonly(sb);
		}
	}
	shrink_dcache_sb(sb);

	/* If we are reconfiguring to RDONLY and current sb is read/write,
	 * make sure there are no files open for writing.
	 */
	if (remount_ro) {
		if (force) {
			sb->s_readonly_remount = 1;
			smp_wmb();
		} else {
			retval = sb_prepare_remount_readonly(sb);
			if (retval)
				return retval;
		}
	}

	if (fc->ops->reconfigure) {
		retval = fc->ops->reconfigure(fc);
		if (retval) {
			if (!force)
				goto cancel_readonly;
			/* If forced remount, go ahead despite any errors */
			WARN(1, "forced remount of a %s fs returned %i\n",
			     sb->s_type->name, retval);
		}
	}

	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
				 (fc->sb_flags & fc->sb_flags_mask)));
	/* Needs to be ordered wrt mnt_is_readonly() */
	smp_wmb();
	sb->s_readonly_remount = 0;

	/*
	 * Some filesystems modify their metadata via some other path than the
	 * bdev buffer cache (eg. use a private mapping, or directories in
	 * pagecache, etc). Also file data modifications go via their own
	 * mappings. So If we try to mount readonly then copy the filesystem
	 * from bdev, we could get stale data, so invalidate it to give a best
	 * effort at coherency.
	 */
	if (remount_ro && sb->s_bdev)
		invalidate_bdev(sb->s_bdev);
	return 0;

cancel_readonly:
	sb->s_readonly_remount = 0;
	return retval;
}

static void do_emergency_remount_callback(struct super_block *sb)
{
	down_write(&sb->s_umount);
	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
	    !sb_rdonly(sb)) {
		struct fs_context *fc;

		fc = fs_context_for_reconfigure(sb->s_root,
					SB_RDONLY | SB_FORCE, SB_RDONLY);
		if (!IS_ERR(fc)) {
			if (parse_monolithic_mount_data(fc, NULL) == 0)
				(void)reconfigure_super(fc);
			put_fs_context(fc);
		}
	}
	up_write(&sb->s_umount);
}

static void do_emergency_remount(struct work_struct *work)
{
	__iterate_supers(do_emergency_remount_callback);
	kfree(work);
	printk("Emergency Remount complete\n");
}

void emergency_remount(void)
{
	struct work_struct *work;

	work = kmalloc(sizeof(*work), GFP_ATOMIC);
	if (work) {
		INIT_WORK(work, do_emergency_remount);
		schedule_work(work);
	}
}

static void do_thaw_all_callback(struct super_block *sb)
{
	down_write(&sb->s_umount);
	if (sb->s_root && sb->s_flags & SB_BORN) {
		emergency_thaw_bdev(sb);
		thaw_super_locked(sb);
	} else {
		up_write(&sb->s_umount);
	}
}

static void do_thaw_all(struct work_struct *work)
{
	__iterate_supers(do_thaw_all_callback);
	kfree(work);
	printk(KERN_WARNING "Emergency Thaw complete\n");
}

/**
 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 *
 * Used for emergency unfreeze of all filesystems via SysRq
 */
void emergency_thaw_all(void)
{
	struct work_struct *work;

	work = kmalloc(sizeof(*work), GFP_ATOMIC);
	if (work) {
		INIT_WORK(work, do_thaw_all);
		schedule_work(work);
	}
}

static DEFINE_IDA(unnamed_dev_ida);

/**
 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
 * @p: Pointer to a dev_t.
 *
 * Filesystems which don't use real block devices can call this function
 * to allocate a virtual block device.
 *
 * Context: Any context.  Frequently called while holding sb_lock.
 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
 * or -ENOMEM if memory allocation failed.
 */
int get_anon_bdev(dev_t *p)
{
	int dev;

	/*
	 * Many userspace utilities consider an FSID of 0 invalid.
	 * Always return at least 1 from get_anon_bdev.
	 */
	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
			GFP_ATOMIC);
	if (dev == -ENOSPC)
		dev = -EMFILE;
	if (dev < 0)
		return dev;

	*p = MKDEV(0, dev);
	return 0;
}
EXPORT_SYMBOL(get_anon_bdev);

void free_anon_bdev(dev_t dev)
{
	ida_free(&unnamed_dev_ida, MINOR(dev));
}
EXPORT_SYMBOL(free_anon_bdev);

int set_anon_super(struct super_block *s, void *data)
{
	return get_anon_bdev(&s->s_dev);
}
EXPORT_SYMBOL(set_anon_super);

void kill_anon_super(struct super_block *sb)
{
	dev_t dev = sb->s_dev;
	generic_shutdown_super(sb);
	free_anon_bdev(dev);
}
EXPORT_SYMBOL(kill_anon_super);

void kill_litter_super(struct super_block *sb)
{
	if (sb->s_root)
		d_genocide(sb->s_root);
	kill_anon_super(sb);
}
EXPORT_SYMBOL(kill_litter_super);

int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
{
	return set_anon_super(sb, NULL);
}
EXPORT_SYMBOL(set_anon_super_fc);

static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
{
	return sb->s_fs_info == fc->s_fs_info;
}

static int test_single_super(struct super_block *s, struct fs_context *fc)
{
	return 1;
}

/**
 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
 * @fc: The filesystem context holding the parameters
 * @keying: How to distinguish superblocks
 * @fill_super: Helper to initialise a new superblock
 *
 * Search for a superblock and create a new one if not found.  The search
 * criterion is controlled by @keying.  If the search fails, a new superblock
 * is created and @fill_super() is called to initialise it.
 *
 * @keying can take one of a number of values:
 *
 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
 *     system.  This is typically used for special system filesystems.
 *
 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
 *     distinct keys (where the key is in s_fs_info).  Searching for the same
 *     key again will turn up the superblock for that key.
 *
 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
 *     unkeyed.  Each call will get a new superblock.
 *
 * A permissions check is made by sget_fc() unless we're getting a superblock
 * for a kernel-internal mount or a submount.
 */
int vfs_get_super(struct fs_context *fc,
		  enum vfs_get_super_keying keying,
		  int (*fill_super)(struct super_block *sb,
				    struct fs_context *fc))
{
	int (*test)(struct super_block *, struct fs_context *);
	struct super_block *sb;
	int err;

	switch (keying) {
	case vfs_get_single_super:
	case vfs_get_single_reconf_super:
		test = test_single_super;
		break;
	case vfs_get_keyed_super:
		test = test_keyed_super;
		break;
	case vfs_get_independent_super:
		test = NULL;
		break;
	default:
		BUG();
	}

	sb = sget_fc(fc, test, set_anon_super_fc);
	if (IS_ERR(sb))
		return PTR_ERR(sb);

	if (!sb->s_root) {
		err = fill_super(sb, fc);
		if (err)
			goto error;

		sb->s_flags |= SB_ACTIVE;
		fc->root = dget(sb->s_root);
	} else {
		fc->root = dget(sb->s_root);
		if (keying == vfs_get_single_reconf_super) {
			err = reconfigure_super(fc);
			if (err < 0) {
				dput(fc->root);
				fc->root = NULL;
				goto error;
			}
		}
	}

	return 0;

error:
	deactivate_locked_super(sb);
	return err;
}
EXPORT_SYMBOL(vfs_get_super);

int get_tree_nodev(struct fs_context *fc,
		  int (*fill_super)(struct super_block *sb,
				    struct fs_context *fc))
{
	return vfs_get_super(fc, vfs_get_independent_super, fill_super);
}
EXPORT_SYMBOL(get_tree_nodev);

int get_tree_single(struct fs_context *fc,
		  int (*fill_super)(struct super_block *sb,
				    struct fs_context *fc))
{
	return vfs_get_super(fc, vfs_get_single_super, fill_super);
}
EXPORT_SYMBOL(get_tree_single);

int get_tree_single_reconf(struct fs_context *fc,
		  int (*fill_super)(struct super_block *sb,
				    struct fs_context *fc))
{
	return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
}
EXPORT_SYMBOL(get_tree_single_reconf);

int get_tree_keyed(struct fs_context *fc,
		  int (*fill_super)(struct super_block *sb,
				    struct fs_context *fc),
		void *key)
{
	fc->s_fs_info = key;
	return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
}
EXPORT_SYMBOL(get_tree_keyed);

#ifdef CONFIG_BLOCK

static int set_bdev_super(struct super_block *s, void *data)
{
	s->s_bdev = data;
	s->s_dev = s->s_bdev->bd_dev;
	s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi);

	if (bdev_stable_writes(s->s_bdev))
		s->s_iflags |= SB_I_STABLE_WRITES;
	return 0;
}

static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
{
	return set_bdev_super(s, fc->sget_key);
}

static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
{
	return !(s->s_iflags & SB_I_RETIRED) && s->s_bdev == fc->sget_key;
}

/**
 * get_tree_bdev - Get a superblock based on a single block device
 * @fc: The filesystem context holding the parameters
 * @fill_super: Helper to initialise a new superblock
 */
int get_tree_bdev(struct fs_context *fc,
		int (*fill_super)(struct super_block *,
				  struct fs_context *))
{
	struct block_device *bdev;
	struct super_block *s;
	fmode_t mode = FMODE_READ | FMODE_EXCL;
	int error = 0;

	if (!(fc->sb_flags & SB_RDONLY))
		mode |= FMODE_WRITE;

	if (!fc->source)
		return invalf(fc, "No source specified");

	bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
	if (IS_ERR(bdev)) {
		errorf(fc, "%s: Can't open blockdev", fc->source);
		return PTR_ERR(bdev);
	}

	/* Once the superblock is inserted into the list by sget_fc(), s_umount
	 * will protect the lockfs code from trying to start a snapshot while
	 * we are mounting
	 */
	mutex_lock(&bdev->bd_fsfreeze_mutex);
	if (bdev->bd_fsfreeze_count > 0) {
		mutex_unlock(&bdev->bd_fsfreeze_mutex);
		warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
		blkdev_put(bdev, mode);
		return -EBUSY;
	}

	fc->sb_flags |= SB_NOSEC;
	fc->sget_key = bdev;
	s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
	mutex_unlock(&bdev->bd_fsfreeze_mutex);
	if (IS_ERR(s)) {
		blkdev_put(bdev, mode);
		return PTR_ERR(s);
	}

	if (s->s_root) {
		/* Don't summarily change the RO/RW state. */
		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
			warnf(fc, "%pg: Can't mount, would change RO state", bdev);
			deactivate_locked_super(s);
			blkdev_put(bdev, mode);
			return -EBUSY;
		}

		/*
		 * s_umount nests inside open_mutex during
		 * __invalidate_device().  blkdev_put() acquires
		 * open_mutex and can't be called under s_umount.  Drop
		 * s_umount temporarily.  This is safe as we're
		 * holding an active reference.
		 */
		up_write(&s->s_umount);
		blkdev_put(bdev, mode);
		down_write(&s->s_umount);
	} else {
		s->s_mode = mode;
		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
					fc->fs_type->name, s->s_id);
		sb_set_blocksize(s, block_size(bdev));
		error = fill_super(s, fc);
		if (error) {
			deactivate_locked_super(s);
			return error;
		}

		s->s_flags |= SB_ACTIVE;
		bdev->bd_super = s;
	}

	BUG_ON(fc->root);
	fc->root = dget(s->s_root);
	return 0;
}
EXPORT_SYMBOL(get_tree_bdev);

static int test_bdev_super(struct super_block *s, void *data)
{
	return !(s->s_iflags & SB_I_RETIRED) && (void *)s->s_bdev == data;
}

struct dentry *mount_bdev(struct file_system_type *fs_type,
	int flags, const char *dev_name, void *data,
	int (*fill_super)(struct super_block *, void *, int))
{
	struct block_device *bdev;
	struct super_block *s;
	fmode_t mode = FMODE_READ | FMODE_EXCL;
	int error = 0;

	if (!(flags & SB_RDONLY))
		mode |= FMODE_WRITE;

	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
	if (IS_ERR(bdev))
		return ERR_CAST(bdev);

	/*
	 * once the super is inserted into the list by sget, s_umount
	 * will protect the lockfs code from trying to start a snapshot
	 * while we are mounting
	 */
	mutex_lock(&bdev->bd_fsfreeze_mutex);
	if (bdev->bd_fsfreeze_count > 0) {
		mutex_unlock(&bdev->bd_fsfreeze_mutex);
		error = -EBUSY;
		goto error_bdev;
	}
	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
		 bdev);
	mutex_unlock(&bdev->bd_fsfreeze_mutex);
	if (IS_ERR(s))
		goto error_s;

	if (s->s_root) {
		if ((flags ^ s->s_flags) & SB_RDONLY) {
			deactivate_locked_super(s);
			error = -EBUSY;
			goto error_bdev;
		}

		/*
		 * s_umount nests inside open_mutex during
		 * __invalidate_device().  blkdev_put() acquires
		 * open_mutex and can't be called under s_umount.  Drop
		 * s_umount temporarily.  This is safe as we're
		 * holding an active reference.
		 */
		up_write(&s->s_umount);
		blkdev_put(bdev, mode);
		down_write(&s->s_umount);
	} else {
		s->s_mode = mode;
		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
					fs_type->name, s->s_id);
		sb_set_blocksize(s, block_size(bdev));
		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
		if (error) {
			deactivate_locked_super(s);
			goto error;
		}

		s->s_flags |= SB_ACTIVE;
		bdev->bd_super = s;
	}

	return dget(s->s_root);

error_s:
	error = PTR_ERR(s);
error_bdev:
	blkdev_put(bdev, mode);
error:
	return ERR_PTR(error);
}
EXPORT_SYMBOL(mount_bdev);

void kill_block_super(struct super_block *sb)
{
	struct block_device *bdev = sb->s_bdev;
	fmode_t mode = sb->s_mode;

	bdev->bd_super = NULL;
	generic_shutdown_super(sb);
	sync_blockdev(bdev);
	WARN_ON_ONCE(!(mode & FMODE_EXCL));
	blkdev_put(bdev, mode | FMODE_EXCL);
}

EXPORT_SYMBOL(kill_block_super);
#endif

struct dentry *mount_nodev(struct file_system_type *fs_type,
	int flags, void *data,
	int (*fill_super)(struct super_block *, void *, int))
{
	int error;
	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);

	if (IS_ERR(s))
		return ERR_CAST(s);

	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
	if (error) {
		deactivate_locked_super(s);
		return ERR_PTR(error);
	}
	s->s_flags |= SB_ACTIVE;
	return dget(s->s_root);
}
EXPORT_SYMBOL(mount_nodev);

int reconfigure_single(struct super_block *s,
		       int flags, void *data)
{
	struct fs_context *fc;
	int ret;

	/* The caller really need to be passing fc down into mount_single(),
	 * then a chunk of this can be removed.  [Bollocks -- AV]
	 * Better yet, reconfiguration shouldn't happen, but rather the second
	 * mount should be rejected if the parameters are not compatible.
	 */
	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
	if (IS_ERR(fc))
		return PTR_ERR(fc);

	ret = parse_monolithic_mount_data(fc, data);
	if (ret < 0)
		goto out;

	ret = reconfigure_super(fc);
out:
	put_fs_context(fc);
	return ret;
}

static int compare_single(struct super_block *s, void *p)
{
	return 1;
}

struct dentry *mount_single(struct file_system_type *fs_type,
	int flags, void *data,
	int (*fill_super)(struct super_block *, void *, int))
{
	struct super_block *s;
	int error;

	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
	if (IS_ERR(s))
		return ERR_CAST(s);
	if (!s->s_root) {
		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
		if (!error)
			s->s_flags |= SB_ACTIVE;
	} else {
		error = reconfigure_single(s, flags, data);
	}
	if (unlikely(error)) {
		deactivate_locked_super(s);
		return ERR_PTR(error);
	}
	return dget(s->s_root);
}
EXPORT_SYMBOL(mount_single);

/**
 * vfs_get_tree - Get the mountable root
 * @fc: The superblock configuration context.
 *
 * The filesystem is invoked to get or create a superblock which can then later
 * be used for mounting.  The filesystem places a pointer to the root to be
 * used for mounting in @fc->root.
 */
int vfs_get_tree(struct fs_context *fc)
{
	struct super_block *sb;
	int error;

	if (fc->root)
		return -EBUSY;

	/* Get the mountable root in fc->root, with a ref on the root and a ref
	 * on the superblock.
	 */
	error = fc->ops->get_tree(fc);
	if (error < 0)
		return error;

	if (!fc->root) {
		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
		       fc->fs_type->name);
		/* We don't know what the locking state of the superblock is -
		 * if there is a superblock.
		 */
		BUG();
	}

	sb = fc->root->d_sb;
	WARN_ON(!sb->s_bdi);

	/*
	 * Write barrier is for super_cache_count(). We place it before setting
	 * SB_BORN as the data dependency between the two functions is the
	 * superblock structure contents that we just set up, not the SB_BORN
	 * flag.
	 */
	smp_wmb();
	sb->s_flags |= SB_BORN;

	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
	if (unlikely(error)) {
		fc_drop_locked(fc);
		return error;
	}

	/*
	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
	 * but s_maxbytes was an unsigned long long for many releases. Throw
	 * this warning for a little while to try and catch filesystems that
	 * violate this rule.
	 */
	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);

	return 0;
}
EXPORT_SYMBOL(vfs_get_tree);

/*
 * Setup private BDI for given superblock. It gets automatically cleaned up
 * in generic_shutdown_super().
 */
int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
{
	struct backing_dev_info *bdi;
	int err;
	va_list args;

	bdi = bdi_alloc(NUMA_NO_NODE);
	if (!bdi)
		return -ENOMEM;

	va_start(args, fmt);
	err = bdi_register_va(bdi, fmt, args);
	va_end(args);
	if (err) {
		bdi_put(bdi);
		return err;
	}
	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
	sb->s_bdi = bdi;
	sb->s_iflags |= SB_I_PERSB_BDI;

	return 0;
}
EXPORT_SYMBOL(super_setup_bdi_name);

/*
 * Setup private BDI for given superblock. I gets automatically cleaned up
 * in generic_shutdown_super().
 */
int super_setup_bdi(struct super_block *sb)
{
	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);

	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
				    atomic_long_inc_return(&bdi_seq));
}
EXPORT_SYMBOL(super_setup_bdi);

/**
 * sb_wait_write - wait until all writers to given file system finish
 * @sb: the super for which we wait
 * @level: type of writers we wait for (normal vs page fault)
 *
 * This function waits until there are no writers of given type to given file
 * system.
 */
static void sb_wait_write(struct super_block *sb, int level)
{
	percpu_down_write(sb->s_writers.rw_sem + level-1);
}

/*
 * We are going to return to userspace and forget about these locks, the
 * ownership goes to the caller of thaw_super() which does unlock().
 */
static void lockdep_sb_freeze_release(struct super_block *sb)
{
	int level;

	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
}

/*
 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
 */
static void lockdep_sb_freeze_acquire(struct super_block *sb)
{
	int level;

	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
}

static void sb_freeze_unlock(struct super_block *sb, int level)
{
	for (level--; level >= 0; level--)
		percpu_up_write(sb->s_writers.rw_sem + level);
}

/**
 * freeze_super - lock the filesystem and force it into a consistent state
 * @sb: the super to lock
 *
 * Syncs the super to make sure the filesystem is consistent and calls the fs's
 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
 * -EBUSY.
 *
 * During this function, sb->s_writers.frozen goes through these values:
 *
 * SB_UNFROZEN: File system is normal, all writes progress as usual.
 *
 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
 * writes should be blocked, though page faults are still allowed. We wait for
 * all writes to complete and then proceed to the next stage.
 *
 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
 * but internal fs threads can still modify the filesystem (although they
 * should not dirty new pages or inodes), writeback can run etc. After waiting
 * for all running page faults we sync the filesystem which will clean all
 * dirty pages and inodes (no new dirty pages or inodes can be created when
 * sync is running).
 *
 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
 * modification are blocked (e.g. XFS preallocation truncation on inode
 * reclaim). This is usually implemented by blocking new transactions for
 * filesystems that have them and need this additional guard. After all
 * internal writers are finished we call ->freeze_fs() to finish filesystem
 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
 *
 * sb->s_writers.frozen is protected by sb->s_umount.
 */
int freeze_super(struct super_block *sb)
{
	int ret;

	atomic_inc(&sb->s_active);
	down_write(&sb->s_umount);
	if (sb->s_writers.frozen != SB_UNFROZEN) {
		deactivate_locked_super(sb);
		return -EBUSY;
	}

	if (!(sb->s_flags & SB_BORN)) {
		up_write(&sb->s_umount);
		return 0;	/* sic - it's "nothing to do" */
	}

	if (sb_rdonly(sb)) {
		/* Nothing to do really... */
		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
		up_write(&sb->s_umount);
		return 0;
	}

	sb->s_writers.frozen = SB_FREEZE_WRITE;
	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
	up_write(&sb->s_umount);
	sb_wait_write(sb, SB_FREEZE_WRITE);
	down_write(&sb->s_umount);

	/* Now we go and block page faults... */
	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);

	/* All writers are done so after syncing there won't be dirty data */
	ret = sync_filesystem(sb);
	if (ret) {
		sb->s_writers.frozen = SB_UNFROZEN;
		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
		wake_up(&sb->s_writers.wait_unfrozen);
		deactivate_locked_super(sb);
		return ret;
	}

	/* Now wait for internal filesystem counter */
	sb->s_writers.frozen = SB_FREEZE_FS;
	sb_wait_write(sb, SB_FREEZE_FS);

	if (sb->s_op->freeze_fs) {
		ret = sb->s_op->freeze_fs(sb);
		if (ret) {
			printk(KERN_ERR
				"VFS:Filesystem freeze failed\n");
			sb->s_writers.frozen = SB_UNFROZEN;
			sb_freeze_unlock(sb, SB_FREEZE_FS);
			wake_up(&sb->s_writers.wait_unfrozen);
			deactivate_locked_super(sb);
			return ret;
		}
	}
	/*
	 * For debugging purposes so that fs can warn if it sees write activity
	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
	 */
	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
	lockdep_sb_freeze_release(sb);
	up_write(&sb->s_umount);
	return 0;
}
EXPORT_SYMBOL(freeze_super);

static int thaw_super_locked(struct super_block *sb)
{
	int error;

	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
		up_write(&sb->s_umount);
		return -EINVAL;
	}

	if (sb_rdonly(sb)) {
		sb->s_writers.frozen = SB_UNFROZEN;
		goto out;
	}

	lockdep_sb_freeze_acquire(sb);

	if (sb->s_op->unfreeze_fs) {
		error = sb->s_op->unfreeze_fs(sb);
		if (error) {
			printk(KERN_ERR
				"VFS:Filesystem thaw failed\n");
			lockdep_sb_freeze_release(sb);
			up_write(&sb->s_umount);
			return error;
		}
	}

	sb->s_writers.frozen = SB_UNFROZEN;
	sb_freeze_unlock(sb, SB_FREEZE_FS);
out:
	wake_up(&sb->s_writers.wait_unfrozen);
	deactivate_locked_super(sb);
	return 0;
}

/**
 * thaw_super -- unlock filesystem
 * @sb: the super to thaw
 *
 * Unlocks the filesystem and marks it writeable again after freeze_super().
 */
int thaw_super(struct super_block *sb)
{
	down_write(&sb->s_umount);
	return thaw_super_locked(sb);
}
EXPORT_SYMBOL(thaw_super);
back to top