https://github.com/geodynamics/citcoms
Revision bcf06ab870d4cfd4a7c8594146ed51e41b23d5f9 authored by Eh Tan on 09 August 2007, 22:57:28 UTC, committed by Eh Tan on 09 August 2007, 22:57:28 UTC
Two non-dimensional parameters are added: "dissipation_number" and "gruneisen"
under the Solver component. One can use the original incompressible solver by
setting "gruneisen=0". The code will treat this as "gruneisen=infinity". 
Setting non-zero value to "gruneisen" will switch to compressible solver.

One can use the TALA solver for incompressible case by setting "gruneisen" to
a non-zero value while setting "dissipation_number=0". This is useful when
debugging the compressible solver.

Two implementations are available: one by Wei Leng (U. Colorado) and one by
Eh Tan (CIG). Leng's version uses the original conjugate gradient method for
the Uzawa iteration and moves the contribution of compressibility to the RHS,
similar to the method of Ita and King, JGR, 1994. Tan's version uses the
bi-conjugate gradient stablized method for the Uzawa iteration, similar to the
method of Tan and Gurnis, JGR, 2007. Both versions agree very well. In the
benchmark case, 33x33x33 nodes per cap, Di/gamma=1.0, Ra=1.0, delta function
of load at the mid mantle, the peak velocity differs by only 0.007%. Leng's
version is enabled by default. Edit function solve_Ahat_p_fhat() in
lib/Stokes_flow_Incomp.c to switch to Tan's version.

1 parent 91bcb85
Raw File
Tip revision: bcf06ab870d4cfd4a7c8594146ed51e41b23d5f9 authored by Eh Tan on 09 August 2007, 22:57:28 UTC
Finished the compressible Stokes solver for TALA.
Tip revision: bcf06ab
Composition_related.c
/*
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *<LicenseText>
 *
 * CitcomS by Louis Moresi, Shijie Zhong, Lijie Han, Eh Tan,
 * Clint Conrad, Michael Gurnis, and Eun-seo Choi.
 * Copyright (C) 1994-2005, California Institute of Technology.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *</LicenseText>
 *
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 */

#include <math.h>
#include "global_defs.h"
#include "parsing.h"
#include "parallel_related.h"
#include "composition_related.h"


static void allocate_composition_memory(struct All_variables *E);
static void compute_elemental_composition_ratio_method(struct All_variables *E);
static void init_bulk_composition(struct All_variables *E);
static void check_initial_composition(struct All_variables *E);
static void map_composition_to_nodes(struct All_variables *E);


void composition_input(struct All_variables *E)
{
    int i;
    int m = E->parallel.me;

    input_int("chemical_buoyancy",&(E->composition.ichemical_buoyancy),
              "1,0,nomax",m);

    if (E->composition.ichemical_buoyancy==1) {

        /* ibuoy_type=0 (absolute method) */
        /* ibuoy_type=1 (ratio method) */

        input_int("buoy_type",&(E->composition.ibuoy_type),"1,0,nomax",m);
        if (E->composition.ibuoy_type!=1) {
            fprintf(stderr,"Terror-Sorry, only ratio method allowed now\n");
            fflush(stderr);
            parallel_process_termination();
        }

        if (E->composition.ibuoy_type==0)
            E->composition.ncomp = E->trace.nflavors;
        else if (E->composition.ibuoy_type==1)
            E->composition.ncomp = E->trace.nflavors - 1;

        E->composition.buoyancy_ratio = (double*) malloc(E->composition.ncomp
                                                         *sizeof(double));

        /* default values .... */
        for (i=0; i<E->composition.ncomp; i++)
            E->composition.buoyancy_ratio[i] = 1.0;

        input_double_vector("buoyancy_ratio", E->composition.ncomp,
                            E->composition.buoyancy_ratio,m);

    }


    /* compositional rheology */

    /* icompositional_rheology=0 (off) */
    /* icompositional_rheology=1 (on) */
    E->composition.icompositional_rheology = 0;
    /*
    input_int("compositional_rheology",
              &(E->composition.icompositional_rheology),"1,0,nomax",m);

    if (E->composition.icompositional_rheology==1) {
        input_double("compositional_prefactor",
                     &(E->composition.compositional_rheology_prefactor),
                     "1.0",m);
    }
    */

    return;
}



void composition_setup(struct All_variables *E)
{
    allocate_composition_memory(E);

    return;
}


void write_composition_instructions(struct All_variables *E)
{
    int k;

    E->composition.on = 0;
    if (E->composition.ichemical_buoyancy==1 ||
        E->composition.icompositional_rheology)
        E->composition.on = 1;

    if (E->composition.on) {

        if (E->trace.nflavors < 1) {
            fprintf(E->trace.fpt, "Tracer flavors must be greater than 1 to track composition\n");
            parallel_process_termination();
        }

        if (E->composition.ichemical_buoyancy==0)
            fprintf(E->trace.fpt,"Passive Tracers\n");

        if (E->composition.ichemical_buoyancy==1)
            fprintf(E->trace.fpt,"Active Tracers\n");


        if (E->composition.ibuoy_type==1) fprintf(E->trace.fpt,"Ratio Method\n");
        if (E->composition.ibuoy_type==0) fprintf(E->trace.fpt,"Absolute Method\n");

        for(k=0; k<E->composition.ncomp; k++) {
            fprintf(E->trace.fpt,"Buoyancy Ratio: %f\n", E->composition.buoyancy_ratio[k]);
        }

        /*
        if (E->composition.icompositional_rheology==0) {
            fprintf(E->trace.fpt,"Compositional Rheology - OFF\n");
        }
        else if (E->composition.icompositional_rheology>0) {
            fprintf(E->trace.fpt,"Compositional Rheology - ON\n");
            fprintf(E->trace.fpt,"Compositional Prefactor: %f\n",
            E->composition.compositional_rheology_prefactor);
        }
        */

        fflush(E->trace.fpt);
    }

    return;
}


/************ FILL COMPOSITION ************************/
void fill_composition(struct All_variables *E)
{

    /* XXX: Currently, only the ratio method works here.           */
    /* Will have to come back here to include the absolute method. */

    /* ratio method */

    if (E->composition.ibuoy_type==1) {
        compute_elemental_composition_ratio_method(E);
    }

    /* absolute method */

    if (E->composition.ibuoy_type!=1) {
        fprintf(E->trace.fpt,"Error(compute...)-only ratio method now\n");
        fflush(E->trace.fpt);
        exit(10);
    }

    /* Map elemental composition to nodal points */

    map_composition_to_nodes(E);

    return;
}



static void allocate_composition_memory(struct All_variables *E)
{
    int i, j;

    for (i=0; i<E->composition.ncomp; i++) {
        E->composition.bulk_composition = (double*) malloc(E->composition.ncomp*sizeof(double));
        E->composition.initial_bulk_composition = (double*) malloc(E->composition.ncomp*sizeof(double));
        E->composition.error_fraction = (double*) malloc(E->composition.ncomp*sizeof(double));
    }

    /* allocat memory for composition fields at the nodes and elements */

    for (j=1;j<=E->sphere.caps_per_proc;j++) {
        if ((E->composition.comp_el[j]=(double **)malloc((E->composition.ncomp)*sizeof(double*)))==NULL) {
            fprintf(E->trace.fpt,"AKM(allocate_composition_memory)-no memory 8987y\n");
            fflush(E->trace.fpt);
            exit(10);
        }
        if ((E->composition.comp_node[j]=(double **)malloc((E->composition.ncomp)*sizeof(double*)))==NULL) {
            fprintf(E->trace.fpt,"AKM(allocate_composition_memory)-no memory 8988y\n");
            fflush(E->trace.fpt);
            exit(10);
        }

        for (i=0; i<E->composition.ncomp; i++) {
            if ((E->composition.comp_el[j][i]=(double *)malloc((E->lmesh.nel+1)*sizeof(double)))==NULL) {
                fprintf(E->trace.fpt,"AKM(allocate_composition_memory)-no memory 8989y\n");
                fflush(E->trace.fpt);
                exit(10);
            }

            if ((E->composition.comp_node[j][i]=(double *)malloc((E->lmesh.nno+1)*sizeof(double)))==NULL) {
                fprintf(E->trace.fpt,"AKM(allocate_composition_memory)-no memory 983rk\n");
                fflush(E->trace.fpt);
                exit(10);
            }
        }
    }

    return;
}


void init_composition(struct All_variables *E)
{
    if (E->composition.ichemical_buoyancy==1 && E->composition.ibuoy_type==1) {
        fill_composition(E);
        check_initial_composition(E);
        init_bulk_composition(E);
    }
    return;
}


static void check_initial_composition(struct All_variables *E)
{
    /* check empty element if using ratio method */
    if (E->composition.ibuoy_type == 1) {
        if (E->trace.istat_iempty) {
            fprintf(E->trace.fpt,"WARNING(check_initial_composition)-number of tracers is REALLY LOW\n");
            fflush(E->trace.fpt);
            fprintf(stderr,"WARNING(check_initial_composition)-number of tracers is REALLY LOW\n");
            exit(10);
        }
    }

    return;
}



/*********** COMPUTE ELEMENTAL COMPOSITION RATIO METHOD ***/
/*                                                        */
/* This function computes the composition per element.    */
/* The concentration of material i in an element is       */
/* defined as:                                            */
/*   (# of tracers of flavor i) / (# of all tracers)      */

static void compute_elemental_composition_ratio_method(struct All_variables *E)
{
    int i, j, e, flavor, numtracers;
    int iempty = 0;


    for (j=1; j<=E->sphere.caps_per_proc; j++) {
        for (e=1; e<=E->lmesh.nel; e++) {
            numtracers = 0;
            for (flavor=0; flavor<E->trace.nflavors; flavor++)
                numtracers += E->trace.ntracer_flavor[j][flavor][e];

            /* Check for empty entries and compute ratio.  */
            /* If no tracers are in an element, skip this element, */
            /* use previous composition. */
            if (numtracers == 0) {
                iempty++;
                continue;
            }

            for(i=0;i<E->composition.ncomp;i++) {
                flavor = i + 1;
                E->composition.comp_el[j][i][e] =
                    E->trace.ntracer_flavor[j][flavor][e] / (double)numtracers;
            }
        }


        if (iempty) {

            if ((1.0*iempty/E->lmesh.nel)>0.80) {
                fprintf(E->trace.fpt,"WARNING(compute_elemental...)-number of tracers is REALLY LOW\n");
                fflush(E->trace.fpt);
                if (E->trace.itracer_warnings==1) exit(10);
            }
        }

    } /* end j */

    E->trace.istat_iempty += iempty;

    return;
}

/********** MAP COMPOSITION TO NODES ****************/
/*                                                  */


static void map_composition_to_nodes(struct All_variables *E)
{
    double *tmp[NCS];
    int i, n, kk;
    int nelem, nodenum;
    int j;


    for (j=1;j<=E->sphere.caps_per_proc;j++) {

        /* first, initialize node array */
        for(i=0;i<E->composition.ncomp;i++) {
            for (kk=1;kk<=E->lmesh.nno;kk++)
                E->composition.comp_node[j][i][kk]=0.0;
        }

        /* Loop through all elements */
        for (nelem=1;nelem<=E->lmesh.nel;nelem++) {

            /* for each element, loop through element nodes */

            /* weight composition */

            for (nodenum=1;nodenum<=8;nodenum++) {
                n = E->ien[j][nelem].node[nodenum];
                for(i=0;i<E->composition.ncomp;i++) {

                    E->composition.comp_node[j][i][n] +=
                        E->composition.comp_el[j][i][nelem]*
                        E->TWW[E->mesh.levmax][j][nelem].node[nodenum];
                }
            }

        } /* end nelem */
    } /* end j */

    for(i=0;i<E->composition.ncomp;i++) {
        for (j=1;j<=E->sphere.caps_per_proc;j++)
            tmp[j] = E->composition.comp_node[j][i];

        (E->exchange_node_d)(E,tmp,E->mesh.levmax);
    }

    /* Divide by nodal volume */
    for (j=1;j<=E->sphere.caps_per_proc;j++) {
        for(i=0;i<E->composition.ncomp;i++)
            for (kk=1;kk<=E->lmesh.nno;kk++)
                E->composition.comp_node[j][i][kk] *= E->MASS[E->mesh.levmax][j][kk];

        /* testing */
        /**
        for(i=0;i<E->composition.ncomp;i++)
            for (kk=1;kk<=E->lmesh.nel;kk++) {
                fprintf(E->trace.fpt,"%d %f\n",kk,E->composition.comp_el[j][i][kk]);
            }

        for(i=0;i<E->composition.ncomp;i++)
            for (kk=1;kk<=E->lmesh.nno;kk++) {
                fprintf(E->trace.fpt,"%d %f %f\n",kk,E->sx[j][3][kk],E->composition.comp_node[j][i][kk]);
            }
        fflush(E->trace.fpt);
        /**/

    } /* end j */

    return;
}


/*********** GET BULK COMPOSITION *******************************/

static void init_bulk_composition(struct All_variables *E)
{

    double return_bulk_value_d();
    double volume;
    double *tmp[NCS];
    int i, m;
    const int ival=0;


    for (i=0; i<E->composition.ncomp; i++) {

        for (m=1;m<=E->sphere.caps_per_proc;m++)
            tmp[m] = E->composition.comp_node[m][i];

        /* ival=0 returns integral not average */
        volume = return_bulk_value_d(E,tmp,ival);

        E->composition.bulk_composition[i] = volume;
        E->composition.initial_bulk_composition[i] = volume;
    }

    return;
}


void get_bulk_composition(struct All_variables *E)
{

    double return_bulk_value_d();
    double volume;
    double *tmp[NCS];
    int i, m;
    const int ival = 0;

    for (i=0; i<E->composition.ncomp; i++) {

        for (m=1;m<=E->sphere.caps_per_proc;m++)
            tmp[m] = E->composition.comp_node[m][i];

        /* ival=0 returns integral not average */
        volume = return_bulk_value_d(E,tmp,ival);

        E->composition.bulk_composition[i] = volume;

        E->composition.error_fraction[i] = (volume - E->composition.initial_bulk_composition[i]) / E->composition.initial_bulk_composition[i];
    }

    return;
}
back to top