https://github.com/geodynamics/citcoms
Revision bcf06ab870d4cfd4a7c8594146ed51e41b23d5f9 authored by Eh Tan on 09 August 2007, 22:57:28 UTC, committed by Eh Tan on 09 August 2007, 22:57:28 UTC
Two non-dimensional parameters are added: "dissipation_number" and "gruneisen"
under the Solver component. One can use the original incompressible solver by
setting "gruneisen=0". The code will treat this as "gruneisen=infinity". 
Setting non-zero value to "gruneisen" will switch to compressible solver.

One can use the TALA solver for incompressible case by setting "gruneisen" to
a non-zero value while setting "dissipation_number=0". This is useful when
debugging the compressible solver.

Two implementations are available: one by Wei Leng (U. Colorado) and one by
Eh Tan (CIG). Leng's version uses the original conjugate gradient method for
the Uzawa iteration and moves the contribution of compressibility to the RHS,
similar to the method of Ita and King, JGR, 1994. Tan's version uses the
bi-conjugate gradient stablized method for the Uzawa iteration, similar to the
method of Tan and Gurnis, JGR, 2007. Both versions agree very well. In the
benchmark case, 33x33x33 nodes per cap, Di/gamma=1.0, Ra=1.0, delta function
of load at the mid mantle, the peak velocity differs by only 0.007%. Leng's
version is enabled by default. Edit function solve_Ahat_p_fhat() in
lib/Stokes_flow_Incomp.c to switch to Tan's version.

1 parent 91bcb85
Raw File
Tip revision: bcf06ab870d4cfd4a7c8594146ed51e41b23d5f9 authored by Eh Tan on 09 August 2007, 22:57:28 UTC
Finished the compressible Stokes solver for TALA.
Tip revision: bcf06ab
Initial_temperature.c
/*
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *<LicenseText>
 *
 * CitcomS by Louis Moresi, Shijie Zhong, Lijie Han, Eh Tan,
 * Clint Conrad, Michael Gurnis, and Eun-seo Choi.
 * Copyright (C) 1994-2005, California Institute of Technology.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *</LicenseText>
 *
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 */

#include <math.h>
#include <assert.h>

#include "global_defs.h"
#include "lith_age.h"
#include "parsing.h"

void parallel_process_termination();
void temperatures_conform_bcs();

#include "initial_temperature.h"
void debug_tic(struct All_variables *);
void read_tic_from_file(struct All_variables *);



void tic_input(struct All_variables *E)
{

  int m = E->parallel.me;
  int noz = E->lmesh.noz;
  int n;


  input_int("tic_method", &(E->convection.tic_method), "0,0,2", m);
  /* When tic_method is 0 (default), the temperature is a linear profile +
     perturbation at some layers.

     When tic_method is -1, the temperature is read in from the
     [datafile_old].velo.[rank].[solution_cycles_init] files.

     When tic_method is 1, the temperature is isothermal (== bottom b.c.) +
     uniformly cold plate (thickness specified by 'half_space_age').

     When tic_method is 2, (tic_method==1) + a hot blob. A user can specify
     the location and radius of the blob, and also the amplitude of temperature
     change in the blob relative to the ambient mantle temperautre
     (E->control.lith_age_mantle_temp).
        - blob_center: A comma-separated list of three float numbers.
        - blob_radius: A dmensionless length, typically a fraction
                       of the Earth's radius.
        - blob_dT    : Dimensionless temperature.

     When tic_method is 3, the temperature is a linear profile + perturbation
     for whole mantle.
  */


  if (E->convection.tic_method == 0 || E->convection.tic_method == 3 ) {
    /* This part put a temperature anomaly at depth where the global
       node number is equal to load_depth. The horizontal pattern of
       the anomaly is given by spherical harmonic ll & mm. */

    input_int("num_perturbations", &n, "0,0,PERTURB_MAX_LAYERS", m);

    if (n > 0) {
      E->convection.number_of_perturbations = n;

      if (! input_float_vector("perturbmag", n, E->convection.perturb_mag, m) ) {
	fprintf(stderr,"Missing input parameter: 'perturbmag'\n");
	parallel_process_termination();
      }
      if (! input_int_vector("perturbm", n, E->convection.perturb_mm, m) ) {
	fprintf(stderr,"Missing input parameter: 'perturbm'\n");
	parallel_process_termination();
      }
      if (! input_int_vector("perturbl", n, E->convection.perturb_ll, m) ) {
	fprintf(stderr,"Missing input parameter: 'perturbl'\n");
	parallel_process_termination();
      }
      if (! input_int_vector("perturblayer", n, E->convection.load_depth, m) ) {
	fprintf(stderr,"Missing input parameter: 'perturblayer'\n");
	parallel_process_termination();
      }
    }
    else {
      E->convection.number_of_perturbations = 1;
      E->convection.perturb_mag[0] = 1;
      E->convection.perturb_mm[0] = 2;
      E->convection.perturb_ll[0] = 2;
      E->convection.load_depth[0] = (noz+1)/2;
    }

  }
  else if (E->convection.tic_method == 1) {

    input_float("half_space_age", &(E->convection.half_space_age), "40.0,1e-3,nomax", m);

  }
  else if (E->convection.tic_method == 2) {
    input_float("half_space_age", &(E->convection.half_space_age), "40.0,1e-3,nomax", m);
    if( ! input_float_vector("blob_center", 3, E->convection.blob_center, m)) {
      assert( E->sphere.caps == 12 || E->sphere.caps == 1 );
      if(E->sphere.caps == 12) { /* Full version: just quit here */
        fprintf(stderr,"Missing input parameter: 'blob_center'.\n");
        parallel_process_termination();
      }
      else if(E->sphere.caps == 1) { /* Regional version: put the blob at the center */
        fprintf(stderr,"Missing input parameter: 'blob_center'. The blob will be placed at the center of the domain.\n");
        E->convection.blob_center[0] = 0.5*(E->control.theta_min+E->control.theta_max);
        E->convection.blob_center[1] = 0.5*(E->control.fi_min+E->control.fi_max);
        E->convection.blob_center[2] = 0.5*(E->sphere.ri+E->sphere.ro);
      }
    }
    input_float("blob_radius", &(E->convection.blob_radius), "0.063,0.0,1.0", m);
    input_float("blob_dT", &(E->convection.blob_dT), "0.18,nomin,nomax", m);
  }
  else {
    fprintf(stderr,"Invalid value of 'tic_method'\n");
    parallel_process_termination();
  }

  return;
}



/* This function is replaced by CitcomS.Components.IC.initTemperature()*/
void convection_initial_temperature(struct All_variables *E)
{
  void report();

  report(E,"Initialize temperature field");

  if (E->control.lith_age)
      lith_age_construct_tic(E);
  else if (E->convection.tic_method == -1)
      read_tic_from_file(E);
  else
      (E->solver.construct_tic_from_input)(E);

  /* Note: it is the callee's responsibility to conform tbc. */
  /* like a call to temperatures_conform_bcs(E); */

  if (E->control.verbose)
    debug_tic(E);

  return;
}


void debug_tic(struct All_variables *E)
{
  int m, j;

  fprintf(E->fp_out,"output_temperature\n");
  for(m=1;m<=E->sphere.caps_per_proc;m++)        {
    fprintf(E->fp_out,"for cap %d\n",E->sphere.capid[m]);
    for (j=1;j<=E->lmesh.nno;j++)
      fprintf(E->fp_out,"X = %.6e Z = %.6e Y = %.6e T[%06d] = %.6e \n",E->sx[m][1][j],E->sx[m][2][j],E->sx[m][3][j],j,E->T[m][j]);
  }
  fflush(E->fp_out);

  return;
}



void read_tic_from_file(struct All_variables *E)
{
  void temperatures_conform_bcs();

  int ii, ll, mm;
  float tt;
  int i, m;
  char output_file[255], input_s[1000];
  FILE *fp;

  float v1, v2, v3, g;

  ii = E->monitor.solution_cycles_init;
  sprintf(output_file,"%s.velo.%d.%d",E->control.old_P_file,E->parallel.me,ii);
  fp=fopen(output_file,"r");
  if (fp == NULL) {
    fprintf(E->fp,"(Initial_temperature.c #1) Cannot open %s\n",output_file);
    parallel_process_termination();
  }

  if (E->parallel.me==0)
    fprintf(E->fp,"Reading %s for initial temperature\n",output_file);

  fgets(input_s,1000,fp);
  sscanf(input_s,"%d %d %f",&ll,&mm,&tt);

  for(m=1;m<=E->sphere.caps_per_proc;m++) {
    fgets(input_s,1000,fp);
    sscanf(input_s,"%d %d",&ll,&mm);
    for(i=1;i<=E->lmesh.nno;i++)  {
      fgets(input_s,1000,fp);
      sscanf(input_s,"%g %g %g %f",&(v1),&(v2),&(v3),&(g));

      /* Truncate the temperature to be within (0,1). */
      /* This might not be desirable in some situations. */
      E->T[m][i] = max(0.0,min(g,1.0));
    }
  }
  fclose (fp);

  temperatures_conform_bcs(E);

  return;
}


back to top