https://github.com/geodynamics/citcoms
Revision bcf06ab870d4cfd4a7c8594146ed51e41b23d5f9 authored by Eh Tan on 09 August 2007, 22:57:28 UTC, committed by Eh Tan on 09 August 2007, 22:57:28 UTC
Two non-dimensional parameters are added: "dissipation_number" and "gruneisen"
under the Solver component. One can use the original incompressible solver by
setting "gruneisen=0". The code will treat this as "gruneisen=infinity". 
Setting non-zero value to "gruneisen" will switch to compressible solver.

One can use the TALA solver for incompressible case by setting "gruneisen" to
a non-zero value while setting "dissipation_number=0". This is useful when
debugging the compressible solver.

Two implementations are available: one by Wei Leng (U. Colorado) and one by
Eh Tan (CIG). Leng's version uses the original conjugate gradient method for
the Uzawa iteration and moves the contribution of compressibility to the RHS,
similar to the method of Ita and King, JGR, 1994. Tan's version uses the
bi-conjugate gradient stablized method for the Uzawa iteration, similar to the
method of Tan and Gurnis, JGR, 2007. Both versions agree very well. In the
benchmark case, 33x33x33 nodes per cap, Di/gamma=1.0, Ra=1.0, delta function
of load at the mid mantle, the peak velocity differs by only 0.007%. Leng's
version is enabled by default. Edit function solve_Ahat_p_fhat() in
lib/Stokes_flow_Incomp.c to switch to Tan's version.

1 parent 91bcb85
Raw File
Tip revision: bcf06ab870d4cfd4a7c8594146ed51e41b23d5f9 authored by Eh Tan on 09 August 2007, 22:57:28 UTC
Finished the compressible Stokes solver for TALA.
Tip revision: bcf06ab
Viscosity_structures.c
/*
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *<LicenseText>
 *
 * CitcomS by Louis Moresi, Shijie Zhong, Lijie Han, Eh Tan,
 * Clint Conrad, Michael Gurnis, and Eun-seo Choi.
 * Copyright (C) 1994-2005, California Institute of Technology.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *</LicenseText>
 *
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 */
/* Functions relating to the determination of viscosity field either
   as a function of the run, as an initial condition or as specified from
   a previous file */


#include <math.h>
#include <sys/types.h>
#include "element_definitions.h"
#include "global_defs.h"
#include "parsing.h"

static void apply_low_visc_wedge_channel(struct All_variables *E, float **evisc);
static void low_viscosity_channel_factor(struct All_variables *E, float *F);
static void low_viscosity_wedge_factor(struct All_variables *E, float *F);


void viscosity_system_input(struct All_variables *E)
{
    int m=E->parallel.me;
    int i;

    /* default values .... */
    for(i=0;i<40;i++) {
        E->viscosity.N0[i]=1.0;
        E->viscosity.T[i] = 0.0;
        E->viscosity.Z[i] = 0.0;
        E->viscosity.E[i] = 0.0;
    }

    /* read in information */
    input_boolean("VISC_UPDATE",&(E->viscosity.update_allowed),"on",m);
    input_int("rheol",&(E->viscosity.RHEOL),"3",m);
    input_int("num_mat",&(E->viscosity.num_mat),"1",m);
    input_float_vector("visc0",E->viscosity.num_mat,(E->viscosity.N0),m);

    input_boolean("TDEPV",&(E->viscosity.TDEPV),"on",m);
    if (E->viscosity.TDEPV) {
        input_float_vector("viscT",E->viscosity.num_mat,(E->viscosity.T),m);
        input_float_vector("viscE",E->viscosity.num_mat,(E->viscosity.E),m);
        input_float_vector("viscZ",E->viscosity.num_mat,(E->viscosity.Z),m);
    }


    E->viscosity.sdepv_misfit = 1.0;
    input_boolean("SDEPV",&(E->viscosity.SDEPV),"off",m);
    if (E->viscosity.SDEPV) {
        input_float("sdepv_misfit",&(E->viscosity.sdepv_misfit),"0.001",m);
        input_float_vector("sdepv_expt",E->viscosity.num_mat,(E->viscosity.sdepv_expt),m);
    }

    input_boolean("low_visc_channel",&(E->viscosity.channel),"off",m);
    input_boolean("low_visc_wedge",&(E->viscosity.wedge),"off",m);

    input_float("lv_min_radius",&(E->viscosity.lv_min_radius),"0.9764",m);
    input_float("lv_max_radius",&(E->viscosity.lv_max_radius),"0.9921",m);
    input_float("lv_channel_thickness",&(E->viscosity.lv_channel_thickness),"0.0047",m);
    input_float("lv_reduction",&(E->viscosity.lv_reduction),"0.5",m);

    input_boolean("VMAX",&(E->viscosity.MAX),"off",m);
    if (E->viscosity.MAX)
        input_float("visc_max",&(E->viscosity.max_value),"1e22,1,nomax",m);

    input_boolean("VMIN",&(E->viscosity.MIN),"off",m);
    if (E->viscosity.MIN)
        input_float("visc_min",&(E->viscosity.min_value),"1e20",m);

    return;
}


void viscosity_input(struct All_variables *E)
{
    int m = E->parallel.me;

    input_string("Viscosity",E->viscosity.STRUCTURE,"system",m);
    input_int ("visc_smooth_method",&(E->viscosity.smooth_cycles),"0",m);

    if ( strcmp(E->viscosity.STRUCTURE,"system") == 0)
        E->viscosity.FROM_SYSTEM = 1;
    else
        E->viscosity.FROM_SYSTEM = 0;

    if (E->viscosity.FROM_SYSTEM)
        viscosity_system_input(E);

    return;
}



/* ============================================ */

void get_system_viscosity(E,propogate,evisc,visc)
     struct All_variables *E;
     int propogate;
     float **evisc,**visc;
{
    void visc_from_mat();
    void visc_from_T();
    void visc_from_S();
    void apply_viscosity_smoother();
    void visc_to_node_interpolate();
    void visc_from_nodes_to_gint();
    void visc_from_gint_to_nodes();


    int i,j,m;
    float temp1,temp2,*vvvis;
    double *TG;

    const int vpts = vpoints[E->mesh.nsd];

    if(E->viscosity.TDEPV)
        visc_from_T(E,evisc,propogate);
    else
        visc_from_mat(E,evisc);

    if(E->viscosity.SDEPV)
        visc_from_S(E,evisc,propogate);


    if(E->viscosity.channel || E->viscosity.wedge)
        apply_low_visc_wedge_channel(E, evisc);


    /* min/max cut-off */

    if(E->viscosity.MAX) {
        for(m=1;m<=E->sphere.caps_per_proc;m++)
            for(i=1;i<=E->lmesh.nel;i++)
                for(j=1;j<=vpts;j++)
                    if(evisc[m][(i-1)*vpts + j] > E->viscosity.max_value)
                        evisc[m][(i-1)*vpts + j] = E->viscosity.max_value;
    }

    if(E->viscosity.MIN) {
        for(m=1;m<=E->sphere.caps_per_proc;m++)
            for(i=1;i<=E->lmesh.nel;i++)
                for(j=1;j<=vpts;j++)
                    if(evisc[m][(i-1)*vpts + j] < E->viscosity.min_value)
                        evisc[m][(i-1)*vpts + j] = E->viscosity.min_value;
    }

    if (E->control.verbose)  {
      fprintf(E->fp_out,"output_evisc \n");
      for(m=1;m<=E->sphere.caps_per_proc;m++) {
        fprintf(E->fp_out,"output_evisc for cap %d\n",E->sphere.capid[m]);
      for(i=1;i<=E->lmesh.nel;i++)
          fprintf(E->fp_out,"%d %d %f %f\n",i,E->mat[m][i],evisc[m][(i-1)*vpts+1],evisc[m][(i-1)*vpts+7]);
      }
      fflush(E->fp_out);
    }

    /* interpolate from gauss quadrature points to node points for */
    visc_from_gint_to_nodes(E,evisc,visc,E->mesh.levmax);

    return;
}



void initial_viscosity(struct All_variables *E)
{
    if (E->viscosity.FROM_SYSTEM)
        get_system_viscosity(E,1,E->EVI[E->mesh.levmax],E->VI[E->mesh.levmax]);

    return;
}


void visc_from_mat(E,EEta)
     struct All_variables *E;
     float **EEta;
{

    int i,m,jj;

    for(m=1;m<=E->sphere.caps_per_proc;m++)
        for(i=1;i<=E->lmesh.nel;i++)
            for(jj=1;jj<=vpoints[E->mesh.nsd];jj++)
                EEta[m][ (i-1)*vpoints[E->mesh.nsd]+jj ]=E->viscosity.N0[E->mat[m][i]-1];

    return;
}

void visc_from_T(E,EEta,propogate)
     struct All_variables *E;
     float **EEta;
     int propogate;
{
    int m,i,j,k,l,z,jj,kk,imark;
    float zero,e_6,one,eta0,Tave,depth,temp,tempa,temp1,TT[9];
    float zzz,zz[9];
    float visc1, visc2, tempa_exp;
    const int vpts = vpoints[E->mesh.nsd];
    const int ends = enodes[E->mesh.nsd];
    const int nel = E->lmesh.nel;

    e_6 = 1.e-6;
    one = 1.0;
    zero = 0.0;
    imark = 0;

    switch (E->viscosity.RHEOL)   {
    case 1:
        for(m=1;m<=E->sphere.caps_per_proc;m++)
            for(i=1;i<=nel;i++)   {
                l = E->mat[m][i];

                if(E->control.mat_control==0)
                    tempa = E->viscosity.N0[l-1];
                else if(E->control.mat_control==1)
                    tempa = E->viscosity.N0[l-1]*E->VIP[m][i];

                for(kk=1;kk<=ends;kk++) {
                    TT[kk] = E->T[m][E->ien[m][i].node[kk]];
                }

                for(jj=1;jj<=vpts;jj++) {
                    temp=0.0;
                    for(kk=1;kk<=ends;kk++)   {
                        temp += TT[kk] * E->N.vpt[GNVINDEX(kk,jj)];
                    }

                    EEta[m][ (i-1)*vpts + jj ] = tempa*
                        exp( E->viscosity.E[l-1] * (E->viscosity.T[l-1] - temp));

                }
            }
        break;

    case 2:
        for(m=1;m<=E->sphere.caps_per_proc;m++)
            for(i=1;i<=nel;i++)   {
                l = E->mat[m][i];

                if(E->control.mat_control==0)
                    tempa = E->viscosity.N0[l-1];
                else if(E->control.mat_control==1)
                    tempa = E->viscosity.N0[l-1]*E->VIP[m][i];

                for(kk=1;kk<=ends;kk++) {
                    TT[kk] = E->T[m][E->ien[m][i].node[kk]];
                }

                for(jj=1;jj<=vpts;jj++) {
                    temp=0.0;
                    for(kk=1;kk<=ends;kk++)   {
                        temp += TT[kk] * E->N.vpt[GNVINDEX(kk,jj)];
                    }

                    EEta[m][ (i-1)*vpts + jj ] = tempa*
                        exp( -temp / E->viscosity.T[l-1]);

                }
            }
        break;

    case 3:

        for(m=1;m<=E->sphere.caps_per_proc;m++)
            for(i=1;i<=nel;i++)   {
                l = E->mat[m][i];
                tempa = E->viscosity.N0[l-1];
                j = 0;

                for(kk=1;kk<=ends;kk++) {
                    TT[kk] = E->T[m][E->ien[m][i].node[kk]];
                    zz[kk] = (1.-E->sx[m][3][E->ien[m][i].node[kk]]);
                }

                for(jj=1;jj<=vpts;jj++) {
                    temp=0.0;
                    zzz=0.0;
                    for(kk=1;kk<=ends;kk++)   {
                        TT[kk]=max(TT[kk],zero);
                        temp += min(TT[kk],one) * E->N.vpt[GNVINDEX(kk,jj)];
                        zzz += zz[kk] * E->N.vpt[GNVINDEX(kk,jj)];
                    }

                    if(E->control.mat_control==0)
                        EEta[m][ (i-1)*vpts + jj ] = tempa*
                            exp( E->viscosity.E[l-1]/(temp+E->viscosity.T[l-1])
                                 - E->viscosity.E[l-1]/(one +E->viscosity.T[l-1]) );

                    if(E->control.mat_control==1)
                        EEta[m][ (i-1)*vpts + jj ] = tempa*E->VIP[m][i]*
                            exp( E->viscosity.E[l-1]/(temp+E->viscosity.T[l-1])
                                 - E->viscosity.E[l-1]/(one +E->viscosity.T[l-1]) );
                }
            }
        break;

    case 4:

        for(m=1;m<=E->sphere.caps_per_proc;m++)
            for(i=1;i<=nel;i++)   {
                l = E->mat[m][i];
                tempa = E->viscosity.N0[l-1];
                j = 0;

                for(kk=1;kk<=ends;kk++) {
                    TT[kk] = E->T[m][E->ien[m][i].node[kk]];
                    zz[kk] = (1.-E->sx[m][3][E->ien[m][i].node[kk]]);
                }

                for(jj=1;jj<=vpts;jj++) {
                    temp=0.0;
                    zzz=0.0;
                    for(kk=1;kk<=ends;kk++)   {
                        TT[kk]=max(TT[kk],zero);
                        temp += min(TT[kk],one) * E->N.vpt[GNVINDEX(kk,jj)];
                        zzz += zz[kk] * E->N.vpt[GNVINDEX(kk,jj)];
                    }

                    /* The viscosity formulation (dimensional) is: visc=visc0*exp[(Ea+p*Va)/R*T]
                       Typical values for dry upper mantle are: Ea = 300 KJ/mol ; Va = 1.e-5 m^3/mol
                       T=T0+DT*T'; where DT - temperature contrast (from Rayleigh number)
                       T' - nondimensional temperature; T0 - surface tempereture (273 K)
                       T=DT*[(T0/DT) + T'] => visc=visc0*exp{(Ea+p*Va)/R*DT*[(T0/DT) + T']}
                       visc=visc0*exp{[(Ea/R*DT) + (p*Va/R*DT)]/[(T0/DT) + T']}
                       so: E->viscosity.E = Ea/R*DT ; E->viscosity.Z = Va/R*DT
                       p = zzz and E->viscosity.T = T0/DT */


                    if(E->control.mat_control==0)
                        EEta[m][ (i-1)*vpts + jj ] = tempa*
                            exp( (E->viscosity.E[l-1] +  E->viscosity.Z[l-1]*zzz )
                                 / (E->viscosity.T[l-1]+temp) );



                    if(E->control.mat_control==1)
                        EEta[m][ (i-1)*vpts + jj ] = tempa*E->VIP[m][i]*
                            exp( (E->viscosity.E[l-1] +  E->viscosity.Z[l-1]*zzz )
                                 / (E->viscosity.T[l-1]+temp) );

                }
            }
        break;


    case 5:

        /* same as rheol 3, except alternative margin, VIP, formulation */
        for(m=1;m<=E->sphere.caps_per_proc;m++)
            for(i=1;i<=nel;i++)   {
                l = E->mat[m][i];
                tempa = E->viscosity.N0[l-1];
                j = 0;

                for(kk=1;kk<=ends;kk++) {
                    TT[kk] = E->T[m][E->ien[m][i].node[kk]];
                    zz[kk] = (1.-E->sx[m][3][E->ien[m][i].node[kk]]);
                }

                for(jj=1;jj<=vpts;jj++) {
                    temp=0.0;
                    zzz=0.0;
                    for(kk=1;kk<=ends;kk++)   {
                        TT[kk]=max(TT[kk],zero);
                        temp += min(TT[kk],one) * E->N.vpt[GNVINDEX(kk,jj)];
                        zzz += zz[kk] * E->N.vpt[GNVINDEX(kk,jj)];
                    }

                    if(E->control.mat_control==0)
                        EEta[m][ (i-1)*vpts + jj ] = tempa*
                            exp( E->viscosity.E[l-1]/(temp+E->viscosity.T[l-1])
                                 - E->viscosity.E[l-1]/(one +E->viscosity.T[l-1]) );

                    if(E->control.mat_control==1) {
                     /* visc1 = E->VIP[m][i];
                        visc2 = 2.0/(1./visc1 + 1.);
                        tempa_exp = tempa*
	                exp( E->viscosity.E[l-1]/(temp+E->viscosity.T[l-1])
		           - E->viscosity.E[l-1]/(one +E->viscosity.T[l-1]) );
                        visc1 = tempa*E->viscosity.max_value;
                        if(tempa_exp > visc1) tempa_exp=visc1;
                        EEta[m][ (i-1)*vpts + jj ] = visc2*tempa_exp;
                     */
                       visc1 = E->VIP[m][i];
                       visc2 = tempa*
	               exp( E->viscosity.E[l-1]/(temp+E->viscosity.T[l-1])
		          - E->viscosity.E[l-1]/(one +E->viscosity.T[l-1]) );
                       if(visc1 <= 0.95) visc2=visc1;
                       EEta[m][ (i-1)*vpts + jj ] = visc2;
                      }

                }
            }
        break;




    }

    return;
}


void visc_from_S(E,EEta,propogate)
     struct All_variables *E;
     float **EEta;
     int propogate;
{
    float one,two,scale,stress_magnitude,depth,exponent1;
    float *eedot;

    void strain_rate_2_inv();
    int m,e,l,z,jj,kk;

    const int vpts = vpoints[E->mesh.nsd];
    const int nel = E->lmesh.nel;

    eedot = (float *) malloc((2+nel)*sizeof(float));
    one = 1.0;
    two = 2.0;

    for(m=1;m<=E->sphere.caps_per_proc;m++)  {
        strain_rate_2_inv(E,m,eedot,1);

        for(e=1;e<=nel;e++)   {
            exponent1= one/E->viscosity.sdepv_expt[E->mat[m][e]-1];
            scale=pow(eedot[e],exponent1-one);
            for(jj=1;jj<=vpts;jj++)
                EEta[m][(e-1)*vpts + jj] = scale*pow(EEta[m][(e-1)*vpts+jj],exponent1);
        }
    }

    free ((void *)eedot);
    return;
}



void strain_rate_2_inv(E,m,EEDOT,SQRT)
     struct All_variables *E;
     float *EEDOT;
     int m,SQRT;
{
    void get_global_shape_fn();
    void velo_from_element();

    struct Shape_function GN;
    struct Shape_function_dA dOmega;
    struct Shape_function_dx GNx;



    double edot[4][4], rtf[4][9];
    float VV[4][9], Vxyz[7][9], dilation[9];

    int e, i, j, p, q, n;

    const int nel = E->lmesh.nel;
    const int dims = E->mesh.nsd;
    const int ends = enodes[dims];
    const int lev = E->mesh.levmax;
    const int ppts = ppoints[dims];
    const int sphere_key = 1;


    for(e=1; e<=nel; e++) {

        /* get shape function on presure gauss points */
        get_global_shape_fn(E, e, &GN, &GNx, &dOmega, 2,
                                sphere_key, rtf, lev, m);

        velo_from_element(E, VV, m, e, sphere_key);


        /* Vxyz is the strain rate vector, whose relationship with
         * the strain rate tensor (e) is that:
         *    Vxyz[1] = e11
         *    Vxyz[2] = e22
         *    Vxyz[3] = e33
         *    Vxyz[4] = 2*e12
         *    Vxyz[5] = 2*e13
         *    Vxyz[6] = 2*e23
         * where 1 is theta, 2 is phi, and 3 is r
         */
        for(j=1; j<=ppts; j++) {
            Vxyz[1][j] = 0.0;
            Vxyz[2][j] = 0.0;
            Vxyz[3][j] = 0.0;
            Vxyz[4][j] = 0.0;
            Vxyz[5][j] = 0.0;
            Vxyz[6][j] = 0.0;
            dilation[j] = 0.0;
        }

        for(j=1; j<=ppts; j++) {
            for(i=1; i<=ends; i++) {
                Vxyz[1][j] += (VV[1][i] * GNx.ppt[GNPXINDEX(0, i, j)]
                               + VV[3][i] * E->N.ppt[GNPINDEX(i, j)])
                    * rtf[3][j];
                Vxyz[2][j] += ((VV[2][i] * GNx.ppt[GNPXINDEX(1, i, j)]
                                + VV[1][i] * E->N.ppt[GNPINDEX(i, j)]
                                * cos(rtf[1][j])) / sin(rtf[1][j])
                               + VV[3][i] * E->N.ppt[GNPINDEX(i, j)])
                    * rtf[3][j];
                Vxyz[3][j] += VV[3][i] * GNx.ppt[GNPXINDEX(2, i, j)];

                Vxyz[4][j] += ((VV[1][i] * GNx.ppt[GNPXINDEX(1, i, j)]
                                - VV[2][i] * E->N.ppt[GNPINDEX(i, j)]
                                * cos(rtf[1][j])) / sin(rtf[1][j])
                               + VV[2][i] * GNx.ppt[GNPXINDEX(0, i, j)])
                    * rtf[3][j];
                Vxyz[5][j] += VV[1][i] * GNx.ppt[GNPXINDEX(2, i, j)]
                    + rtf[3][j] * (VV[3][i] * GNx.ppt[GNPXINDEX(0, i, j)]
                                   - VV[1][i] * E->N.ppt[GNPINDEX(i, j)]);
                Vxyz[6][j] += VV[2][i] * GNx.ppt[GNPXINDEX(2, i, j)]
                    + rtf[3][j] * (VV[3][i]
                                   * GNx.ppt[GNPXINDEX(1, i, j)]
                                   / sin(rtf[1][j])
                                   - VV[2][i] * E->N.ppt[GNPINDEX(i, j)]);
            }
        }

        if(E->control.inv_gruneisen != 0) {
            for(j=1; j<=ppts; j++)
                dilation[j] = (Vxyz[1][j] + Vxyz[2][j] + Vxyz[3][j]) / 3.0;
        }

        edot[1][1] = edot[2][2] = edot[3][3] = 0;
        edot[1][2] = edot[1][3] = edot[2][3] = 0;

        /* edot is 2 * (the deviatoric strain rate tensor) */
        for(j=1; j<=ppts; j++) {
            edot[1][1] += 2.0 * (Vxyz[1][j] - dilation[j]);
            edot[2][2] += 2.0 * (Vxyz[2][j] - dilation[j]);
            edot[3][3] += 2.0 * (Vxyz[3][j] - dilation[j]);
            edot[1][2] += Vxyz[4][j];
            edot[1][3] += Vxyz[5][j];
            edot[2][3] += Vxyz[6][j];
        }

        /* TODO: figure out why 2.0 factor is here */
        EEDOT[e] = edot[1][1] * edot[1][1]
            + edot[1][2] * edot[1][2] * 2.0
            + edot[2][2] * edot[2][2]
            + edot[2][3] * edot[2][3] * 2.0
            + edot[3][3] * edot[3][3]
            + edot[1][3] * edot[1][3] * 2.0;
    }

    if(SQRT)
	for(e=1;e<=nel;e++)
	    EEDOT[e] =  sqrt(0.5 *EEDOT[e]);
    else
	for(e=1;e<=nel;e++)
	    EEDOT[e] *=  0.5;

    return;
}



void visc_to_node_interpolate(E,evisc,visc)
     struct All_variables *E;
     float **evisc,**visc;
{

    /*  void exchange_node_f(); */
    /*  void get_global_shape_fn(); */
    /*  void return_horiz_ave_f(); */
    /*  void sphere_interpolate(); */
    /*  void print_interpolated(); */
    /*  void gather_TG_to_me0(); */
    /*  void parallel_process_termination(); */
    /*  int i,j,k,e,node,snode,m,nel2; */
    /*    FILE *fp; */
    /*    char output_file[255]; */

    /*  float *TG,t,f,rad, Szz; */

    /*  double time1,CPU_time0(),tww[9],rtf[4][9]; */

    /*  struct Shape_function GN; */
    /*  struct Shape_function_dA dOmega; */
    /*  struct Shape_function_dx GNx; */

    /*  const int dims=E->mesh.nsd,dofs=E->mesh.dof; */
    /*  const int vpts=vpoints[dims]; */
    /*  const int ppts=ppoints[dims]; */
    /*  const int ends=enodes[dims]; */
    /*  const int nno=E->lmesh.nno; */
    /*  const int lev=E->mesh.levmax; */


    /*     TG =(float *)malloc((E->sphere.nsf+1)*sizeof(float)); */
    /*     for (i=E->sphere.nox;i>=1;i--) */
    /*       for (j=1;j<=E->sphere.noy;j++)  { */
    /*            node = i + (j-1)*E->sphere.nox; */
    /* 	   TG[node] = 0.0; */
    /*   	   m = E->sphere.int_cap[node]; */
    /* 	   e = E->sphere.int_ele[node]; */

    /* 	   if (m>0 && e>0) { */
    /* 	      e=e+E->lmesh.elz-1; */
    /* 	      TG[node] = log10(evisc[m][(e-1)*vpts+1]); */
    /* 	      } */
    /* 	   } */

    /*     gather_TG_to_me0(E,TG); */

    /*     if (E->parallel.me==E->parallel.nprocz-1)  { */
    /*      sprintf(output_file,"%s.evisc_intp",E->control.data_file); */
    /*      fp=fopen(output_file,"w"); */

    /*     rad = 180/M_PI; */
    /*     for (i=E->sphere.nox;i>=1;i--) */
    /*       for (j=1;j<=E->sphere.noy;j++)  { */
    /*            node = i + (j-1)*E->sphere.nox; */
    /*            t = 90-E->sphere.sx[1][node]*rad; */
    /* 	   f = E->sphere.sx[2][node]*rad; */
    /* 	   fprintf (fp,"%.3e %.3e %.4e\n",f,t,TG[node]); */
    /* 	   } */
    /*       fclose(fp); */
    /*      } */

    /*  free((void *)TG); */

    return;
}


static void apply_low_visc_wedge_channel(struct All_variables *E, float **evisc)
{
    void parallel_process_termination();

    int i,j,m;
    const int vpts = vpoints[E->mesh.nsd];
    float *F;

    /* low viscosity channel/wedge require tracers to work */
    if(E->control.tracer == 0) {
        if(E->parallel.me == 0) {
            fprintf(stderr, "Error: low viscosity channel/wedge is turned on, "
                   "but tracer is off!\n");
            fprintf(E->fp, "Error: low viscosity channel/wedge is turned on, "
                   "but tracer is off!\n");
            fflush(E->fp);
        }
        parallel_process_termination();
    }


    F = (float *)malloc((E->lmesh.nel+1)*sizeof(float));
    for(i=1 ; i<=E->lmesh.nel ; i++)
        F[i] = 0.0;

    /* if low viscosity channel ... */
    if(E->viscosity.channel)
        low_viscosity_channel_factor(E, F);


    /* if low viscosity wedge ... */
    if(E->viscosity.wedge)
        low_viscosity_wedge_factor(E, F);


    for(i=1 ; i<=E->lmesh.nel ; i++) {
        if (F[i] != 0.0)
            for(m = 1 ; m <= E->sphere.caps_per_proc ; m++) {
                for(j=1;j<=vpts;j++) {
                    evisc[m][(i-1)*vpts + j] = F[i];
            }
        }
    }


    free(F);

    return;
}




static void low_viscosity_channel_factor(struct All_variables *E, float *F)
{
    int i, ii, k, m, e, ee;
    int nz_min[NCS], nz_max[NCS];
    const int flavor = 0;
    double rad_mean, rr;

    for(m=1; m<=E->sphere.caps_per_proc; m++) {
        /* find index of radius corresponding to lv_min_radius */
        for(e=1; e<=E->lmesh.elz; e++) {
            rad_mean = 0.5 * (E->sx[m][3][E->ien[m][e].node[1]] +
                              E->sx[m][3][E->ien[m][e].node[8]]);
            if(rad_mean >= E->viscosity.lv_min_radius) break;
        }
        nz_min[m] = e;

        /* find index of radius corresponding to lv_max_radius */
        for(e=E->lmesh.elz; e>=1; e--) {
            rad_mean = 0.5 * (E->sx[m][3][E->ien[m][e].node[1]] +
                              E->sx[m][3][E->ien[m][e].node[8]]);
            if(rad_mean <= E->viscosity.lv_max_radius) break;
        }
        nz_max[m] = e;
    }



    for(m=1; m<=E->sphere.caps_per_proc; m++) {
        for(k=1; k<=E->lmesh.elx*E->lmesh.ely; k++) {
            for(i=nz_min[m]; i<=nz_max[m]; i++) {
                e = (k-1)*E->lmesh.elz + i;

                rad_mean = 0.5 * (E->sx[m][3][E->ien[m][e].node[1]] +
                                  E->sx[m][3][E->ien[m][e].node[8]]);

                /* loop over elements below e */
                for(ii=i; ii>=nz_min[m]; ii--) {
                    ee = (k-1)*E->lmesh.elz + ii;

                    rr = 0.5 * (E->sx[m][3][E->ien[m][ee].node[1]] +
                                E->sx[m][3][E->ien[m][ee].node[8]]);

                    /* if ee has tracers in it and is within the channel */
                    if((E->trace.ntracer_flavor[m][flavor][ee] > 0) &&
                       (rad_mean <= rr + E->viscosity.lv_channel_thickness)) {
                           F[e] = E->viscosity.lv_reduction;
                           break;
                       }
                }
            }
        }
    }


    /** debug **
    for(m=1; m<=E->sphere.caps_per_proc; m++)
        for(e=1; e<=E->lmesh.nel; e++)
            fprintf(stderr, "lv_reduction: %d %e\n", e, F[e]);
    /**/

    return;
}


static void low_viscosity_wedge_factor(struct All_variables *E, float *F)
{
    int i, ii, k, m, e, ee;
    int nz_min[NCS], nz_max[NCS];
    const int flavor = 0;
    double rad_mean, rr;

    for(m=1; m<=E->sphere.caps_per_proc; m++) {
        /* find index of radius corresponding to lv_min_radius */
        for(e=1; e<=E->lmesh.elz; e++) {
            rad_mean = 0.5 * (E->sx[m][3][E->ien[m][e].node[1]] +
                              E->sx[m][3][E->ien[m][e].node[8]]);
            if(rad_mean >= E->viscosity.lv_min_radius) break;
        }
        nz_min[m] = e;

        /* find index of radius corresponding to lv_max_radius */
        for(e=E->lmesh.elz; e>=1; e--) {
            rad_mean = 0.5 * (E->sx[m][3][E->ien[m][e].node[1]] +
                              E->sx[m][3][E->ien[m][e].node[8]]);
            if(rad_mean <= E->viscosity.lv_max_radius) break;
        }
        nz_max[m] = e;
    }



    for(m=1; m<=E->sphere.caps_per_proc; m++) {
        for(k=1; k<=E->lmesh.elx*E->lmesh.ely; k++) {
            for(i=nz_min[m]; i<=nz_max[m]; i++) {
                e = (k-1)*E->lmesh.elz + i;

                rad_mean = 0.5 * (E->sx[m][3][E->ien[m][e].node[1]] +
                                  E->sx[m][3][E->ien[m][e].node[8]]);

                /* loop over elements below e */
                for(ii=i; ii>=nz_min[m]; ii--) {
                    ee = (k-1)*E->lmesh.elz + ii;

                    /* if ee has tracers in it */
                    if(E->trace.ntracer_flavor[m][flavor][ee] > 0) {
                        F[e] = E->viscosity.lv_reduction;
                        break;
                    }
                }
            }
        }
    }


    /** debug **
    for(m=1; m<=E->sphere.caps_per_proc; m++)
        for(e=1; e<=E->lmesh.nel; e++)
            fprintf(stderr, "lv_reduction: %d %e\n", e, F[e]);
    /**/

    return;
}
back to top