https://github.com/geodynamics/citcoms
Revision c27c7164b00b949f947d5f0129903a294b5ddba7 authored by Michael Gurnis on 29 January 2007, 20:51:24 UTC, committed by Michael Gurnis on 29 January 2007, 20:51:24 UTC
1 parent a60c042
Raw File
Tip revision: c27c7164b00b949f947d5f0129903a294b5ddba7 authored by Michael Gurnis on 29 January 2007, 20:51:24 UTC
The functionality of this routine is now expanded so that for evey time step the element materials are read in. The code for determining the material file names and opening the file name and then reading in the element files is placed in the same code that the age grids and velocity files are processed. Obviously, reading in materials currently only works for Full; fill be working on Regional next.
Tip revision: c27c716
plot_annulus.py
#!/usr/bin/env python
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
#<LicenseText>
#
# plot_annulus.py by Eh Tan.
# Copyright (C) 2002-2005, California Institute of Technology.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
#
#</LicenseText>
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

"""Plot an annulus cross-section from full spherical CitcomS output

usage: plot_annulus.py modelname step
  modelname: prefix of CitcomS datafile
  step: time step to plot

input:
  modelname.capXX.step

output:
  modelname.step.z###.tgrd
  modelname.xsect.step.ps
"""


def get_radius(modelname, step):
    ### get nodez ###
    capfile = get_capfile(modelname, 0, step)
    data = open(capfile)
    header = data.readline()
    nodex, nodey, nodez = header.split('x')
    nodez = int(nodez)

    ### read z coordinate ###
    radius = range(nodez)
    for i in range(nodez):
        radius[i] = float(data.readline().split()[2])

    data.close()

    return radius


def get_capfile(modelname, cap, step):
    return '%s.cap%02d.%d' % (modelname, cap, step)


def great_circle_proj():
    from math import pi, sin, cos, tan, atan
    while 1:
        text = '''Choose method to specify great circle path:
          (1) a starting point and an azimuth
          (2) a starting point and another point on the path
          (3) a starting point and a rotation pole position\n'''
        option = int(raw_input(text))

        if 1 <= option <= 3:
            lon = float(raw_input('Starting point longitude: '))
            lat = float(raw_input('Starting point latitude: '))
            spoint = '-C%f/%f -L-180/180' % (lon, lat)
            if option == 1:
                az = float(raw_input('Azimuth (in degrees clockwise from north): '))
                proj = '%s -A%f' % (spoint, az)
                break

            if option == 2:
                elon = float(raw_input('2nd point longitude: '))
                elat = float(raw_input('2nd point latitude: '))
                r2d = 180.0 / pi
                ## transfer to azimuth mode
                b = (90 - elat) / r2d
                a = (90 - lat) / r2d
                delta = (elon - lon) / r2d
                if abs(lat) == 90:
                    ## on the pole
                    print 'pole cannot be the starting point.'
                    continue
                elif (elon - lon) % 180 == 0:
                    ## on the same meridian
                    az = 0
                elif lat == 0 and elat == 0:
                    ## on the equator
                    az = 90
                else:
                    az = atan((sin(a)/tan(b) - cos(a)*cos(delta)) / sin(delta))
                    az = 90 - r2d * az

                proj = '%s -A%f' % (spoint, az)
                break

            if option == 3:
                lon = float(raw_input('Pole longitude: '))
                lat = float(raw_input('Pole latitude: '))
                proj = '%s -T%f/%f' % (spoint, lon, lat)
                break

        else:
            print 'Incorrect mode!\n'
            continue

    return proj


#######################################################################
# Main
#######################################################################

import os, sys
import zslice

if len(sys.argv) != 3:
    print __doc__
    sys.exit(0)

modelname = sys.argv[1]
step = int(sys.argv[2])


### get radius ###
radius = get_radius(modelname, step)
nodez = len(radius)
#print radius


### slice the capfile for all layers ###
for cap in range(12):
    capfile = get_capfile(modelname, cap, step)
    exist = 1
    for layer in range(nodez):
        zfile = zslice.zslicefile(capfile, layer)
        exist = exist and os.path.isfile(zfile)

    if not exist:
        #print 'Creating zslice files'
        zslice.zslice(capfile)


### create great circle path ###
gcproj = great_circle_proj()
gcfile = 'circle.xyp'
az_resolution = 0.5
command = 'project %(gcproj)s -G%(az_resolution)f > %(gcfile)s' % vars()
os.system(command)


### create cross section along the great circle ###

## range of layers to plot
botlayer = 0
toplayer = nodez - 1

## min/max values to truncate temperature field
tmin = 0
tmax = 1

bounds = '0/360/-90/90'
xsectfile = '%s.xsect.%d.xyz' % (modelname, step)
out = open(xsectfile,'w')

for layer in range(botlayer, toplayer+1):
    ## gather the filenames of all zfiles
    all_zfiles = ''
    for cap in range(12):
        capfile = get_capfile(modelname, cap, step)
        zfile = zslice.zslicefile(capfile, layer)
        all_zfiles = all_zfiles + ' ' + zfile

    ## create a grdfile for each layer
    grdfile = '%s.%d.z%03d.tgrd' % (modelname, step, layer)
    if not os.path.isfile(grdfile):
        command = '''
cut -d' ' -f1,2,6 %(all_zfiles)s | \
    surface -I%(az_resolution)s -G%(grdfile)s -R%(bounds)s -N1 \
            -Ll%(tmin)d -Lu%(tmax)d
''' % vars()
        os.system(command)

    ## sampling the grdfile along the great circle
    xyptfp = os.popen('grdtrack %(gcfile)s -G%(grdfile)s -Lg' % vars())

    ## write the sampled results (azimuth, r, temperature) to a xect file
    for line in xyptfp.readlines():
        xypt = line.split()
        out.write('%s\t%f\t%s\n' % (xypt[2], radius[layer], xypt[3]) )
    xyptfp.close()

out.close()


### Plotting ###
#print 'Plotting'
psfile = '%s.xsect.%d.ps' % (modelname, step)
mapwidth = 12.0
proj = 'H0/%f' % mapwidth
yshift = mapwidth * 1.5
cptfile = 'zz.cpt'

## colorbar length and location
cbarh = mapwidth / 2
cbxshift = mapwidth + .5
cbyshift = cbarh / 2

## plot the temperature field at mid-depth and a great circle
grdfile = '%s.%d.z%03d.tgrd' % (modelname, step, int(nodez/2))
command = '''
makecpt -Cpolar -T0/1/.1 > %(cptfile)s

grdimage %(grdfile)s -C%(cptfile)s -Bg360 -R%(bounds)s -J%(proj)s -X1.5 -Y%(yshift)f -P -K > %(psfile)s

pscoast -R%(bounds)s -J%(proj)s -W -Dc -K -O >> %(psfile)s

psxy %(gcfile)s -R%(bounds)s -J%(proj)s -W6. -O -K >> %(psfile)s

gmtset  ANOT_FONT_SIZE 9
psscale -C%(cptfile)s -D%(cbxshift)f/%(cbyshift)f/%(cbarh)f/0.25 -K -O >> %(psfile)s
''' % vars()
os.system(command)


## create a polar coordinate plot of the xsection
##
## TODO: there is always a gap on the left side of the annulus. How to fix it?
grdfile2 = 'xsection.grd'
bounds2 = '-180/180/%f/%f' % (radius[botlayer], radius[toplayer])
r_resolution = (radius[toplayer] - radius[botlayer]) / 100
resolution = '%f/%f' % (az_resolution, r_resolution)
yshift = mapwidth * 1.2

command = '''
surface %(xsectfile)s -G%(grdfile2)s -I%(resolution)s -R%(bounds2)s \
        -Ll%(tmin)d -Lu%(tmax)d

grdimage %(grdfile2)s -C%(cptfile)s -JP%(mapwidth)fa -B30ns -R%(bounds2)s -X0.2 -Y-%(yshift)f -P -O >> %(psfile)s

rm -f label.txt %(cptfile)s %(gcfile)s %(xsectfile)s %(grdfile2)s
''' % vars()
os.system(command)


# version
# $Id$

# End of file
back to top